

SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2 Eaculty		Electronics, Telecommunications, and Information
		Technology
1.3	Department	Bases of Electronics
1.4	Field of study	Electronics and Telecommunications Engineering
1.5	Cycle of study	Master of Science
1.6	Program of study/Qualification	Integrated Circuits and Systems
1.7	Form of education	Full time
1.8	Subject code	3.00

2. Data about the subject

2.1	Subject name			VLDI Digital Circuit Design							
2.2	Subject area		Theoretic area								
				Methodological area							
				Analytical area							
2.3	Course responsible/lecturer			Prof.Dr.Ing. Sorin Hintea – Sorin.Hintea@bel.utcluj.ro			.ro				
2.4	1 Teachers in charge of applications			SI. D	r.Ing. Gabor C	sipkes – G	abor	.Csipkes@bel.utcl	uj.ro		
2.5	Year of study	Ι	2.6	Semester	1	2.7	Assessment	Exam	2.8	Subject category	DS/DI

3. Estimated total time

3.8 Total hours per semester

3.1 Hours per week	4	of which 3.2 lecture	2	3.3 tutorial / laboratory	2	
3.4 Total hours in curricula	56	of which 3.5 lecture	28	3.6 tutorial / laboratory	28	
Time allocation						
Manual, lecture material and notes, bibliography						
Supplementary study in the library, online and in the field						
Preparation for seminars/laboratory works, homework, reports, portfolios, essays						
Tutoring						
Exams and tests						
3.7 Total hours of individual study	69					

125

Number of credit points

4. Pre-requisites (where appropriate)

5

4.1 Curriculum	 Electronic devices Fundamental electronic circuits Analysis and synthesis of numeric circuits Systems with digital integrated circuits
4.2 Competence	 Fundamental electronic devices and circuits. Basic knowledge about how MOS transistors work, Elements of logical algebra, Internal structures of digital circuits, Conceptions about digital signal processing and transmission, HDL languages, Basic knowledge of computer-aided design environments for digital circuits.

5. Requirements (where appropriate)

5.1 For lecture	Cluj-Napoca
5.2 For applications: Project	Cluj-Napoca

6. Specific competences

Structure and parameters of MOS transistors. CMOS inverter. Transmission gate. Three-state output. Manufacturing technology of CMOS circuits and design rules. Manufacturing technology of MOS transistors. Layout design rules. Physical design of CMOS circuits. CMOS layout design techniques. Examples of physical design of CMOS circuits Performance analysis of CMOS circuits. The parameters that influence the working speed of the circuits. Propagation of signals. Design techniques for controlling large capacitive loads. Determination of parasitic capacities and resistances. The design of combinational logic circuits. Complementary CMOS logic. Professional competences Dynamic logic. C2MOS logic. CMOS domino logic. Realization of sequential VLSI circuits. Propagation errors in sequential systems. Elimination of propagation errors. Logic structures with a clock. Memory structures with a clock. Multi-phase structures Signal propagation problems in VLSI digital circuits. Synchronous and asynchronous circuits. Designing synchronous circuits. Circuits with own clock. Synchronization of asynchronous signals using PLL loops. Trends in modern design. Examples of circuits made with VLSI CMOS structures. Parity circuits, decoders, etc. Synchronous sequential circuits with synchronous and asynchronous counters. Synchronous sequential circuits with registers. Programmable circuits made in VLSI CMOS technology. ROM memories. RAM memories. Programmable logical areas. Arithmetic circuits made in VLSI technology. adders, subtractors, multipliers, shift registers. Improving the performance of high-capacity arithmetic circuits. Designing memories and logical areas. Memory architectures. Memory cell structures. Peripheral circuits in the memory structure. Case studies.

rsal competences		
Transvers		

7. Discipline objectives (as results from the key competences gained)

7.1	Skill development in the field of VLSI digital circuits design
General objectives	
7.2	1. Assimilation of theoretical knowledge regarding the design of VLSI digital circuits
Specific objectives	2. Obtaining the skills for using specific analysis, simulation and design tools

8. Contents

8.1. Lecture (syllabus)	Teaching methods	Notes
 8.1. Lecture (syllabus) Introduction to VLSI digital systems. History. Design stages. Basic concepts. VLSI design methods. Structure and parameters of MOS transistors. Enhancement channel NMOS transistors. Enhancement channel PMOS transistors. Depletion transistors. Calculation of circuit elements. Resistors. Capacitors. CMOS inverter. Diagram of the inverter. Description of the inverter operation. Influence of device geometry. The noise margin. Other types of inverters. MOS inverter with resistive load. NMOS inverter with enhancement NMOS load. The NMOS inverter with enhancement NMOS load. The NMOS inverter. Transmission gate. Three-state output. Manufacturing technology of CMOS circuits and design rules. Manufacturing technology of MOS transistors. n-well CMOS process. Advanced CMOS circuit manufacturing technologies. Layout design rules. 	Teaching methods	Notes
Physical design of CMOS circuits. CMOS layout design techniques. CMOS inverter. Physical design of logic gates. Complex CMOS gates. Examples of physical design of CMOS circuits Performance analysis of CMOS circuits. Switching characteristics. The parameters that influence the working speed of the circuits. Propagation of signals. Design techniques for controlling large capacitive loads. Determination of parasitic capacities and resistances. The design of combinational logic circuits. Complementary CMOS logic. Dynamic logic. C2MOS logic. CMOS domino logic Designing sequential logic circuits. Implementation of sequential VLSI circuits. Propagation errors in sequential systems. Elimination of propagation errors. Logic structures with a clock. Memory structures with a clock. Multi-phase structures	Presentation, discussion	Laptop, projector
Signal propagation problems in VLSI digital circuits. Synchronous and asynchronous circuits. Designing synchronous circuits. Circuits with own clock. Synchronization of asynchronous signals using PLL loops. Trends in modern design Examples of circuits made with VLSI CMOS structures. Parity circuits, decoders, etc. ALU units. Synchronous sequential circuits with synchronous and asynchronous counters. Synchronous sequential circuits with registers. Programmable circuits made in VLSI CMOS technology. ROM memories. RAM memories. Programmable logical areas. PLA and PAL applications. Arithmetic circuits made in VLSI technology. adders, subtractors, multipliers, shift registers. Improving the performance of high capacity arithmetic circuits. Designing memories and logical areas. Memory architectures. Memory cell structures. Peripheral circuits in the memory structure. Dissipated power. Case studies. Low power digital VLSI circuits and systems. The problem power consumption.		

Spec	ific problems in the design of low power circuits. Techniques for reducing ower dissipated in digital circuits.		
Simu Usino	lation of VLSI circuits. Using the Mentor Graphics design environment. the Xilinx Foundation and Ise Webpack environments.		
Testi	ng of integrated digital systems. Design requirements for testing.		
Reter and s	ntion techniques. Errors in CMOS digital circuits. Testing of combinational sequential circuits.		
8.2 L	aboratory	Teaching methods	Notes
1	Introduction to the Mentor Graphics design and simulation environment		
2	Examples of simulating simple blocks with Eldo	am	ú
3	ICflow layout package and Caliber xRC extraction – examples for some elementary gates	se, te	ooard
4	Simulation of signal propagation through combinational circuits	erci	alt
5	Basic cells in fractional frequency dividers - programmable integer divider	exe	lent
6	Basic cells in fractional frequency dividers - rate multipliers	;tic	Lin Lin
7	Basic cells in fractional frequency dividers - pulse extractors ("pulse swallower")	, didac	, expe
8	Functional simulation of the fractional divisor. Layout elements	ork	ation oard
9	Advanced arithmetic circuit structures – advanced 1-bit adders	v w	ment tic b
10	8-bit full adder - case study and hybrid realization with propagation and carry anticipation	erimen	instrur nagne
11	8-bit full adder – layout elements	l exp	tory hite/r
12	Signal propagation through digital circuits: the study of delays and logical hazard	tic and	labora ers, wł
13	Optimizing the propagation delay through critical paths	lidac	e of nput
14	Circuits with large load capacitances	Δ	Usc
Biblio	ography		

- 1. Jan M. Rabaey, Anantha Chandrakasan, Borivoje Nicolic, *Digital Integrated Circits, second edition*, Prentice Hall, 2003
- 2. Neil H. E. Weste, David Harris, CMOS VLSI Design: A Circuits and System Perspective, third edition, Addison Wesley, 2004
- 3. John F. Wakerly, *Circuite digitale Principiile și practicile folosite în proiectare*, Teora, 2005
- 4. Barry Wilkinson, Electronica Digitală, Teora, 2005
- 5. Sorin Hintea, *Tehnici de proiectare a circuitelor digitale VLSI*, Editura Casa Cărții de Știință, Cluj-Napoca, 1998
- 6. Geiger, Randall, Allen, Phillip E., Strader, Noel R. VLSI design techniques for analog digital circuits, McGraw – Hill Publishing Company, 1990
- 7. Milos Ercegovac, Tomas Lang, Jaime H. Moreno. *Introduction to Digital Systems*. John Wiley & Sons, Inc. 1999
- 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The skills acquired will be necessary for employees in the following possible occupations according to COR:

electronics engineer, electronics engineer designer, applied electronics research engineer, engineer of microelectronics research, electrotechnology engineers, information technology manager and communications, systems and computer engineer designer, communications designer engineer, specialists in information technology.

10. Evaluations

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the		
			final grade		
10.4 Lecture	Solving two theoretic	- Written exam			
	questions and a set of		33%		
	multiple choice questions				
10.4 Laboratory	Solving an application with a	 Written report 	33%		
	written and report and				
	presentation				
10.5	Verification of the skills and	 Semester-long verification 	33%		
Project	abilities acquired as a result of	through periodic			
	the project activities	presentation of the project			
10.6 Minimum	standard of performance				
Each of the three assessments					

Date of filling in: Responsible		Title Surname NAME	Signature
	Course	Prof.Dr.Ing. Sorin HINTEA	
	Aplications	Sl. Dr.Ing. Gabor CSIPKES	

Date of approval in the Department of Bases of Electronics	Head of Department
	Prof. Sorin HINTEA, PhD eng
Date of approval in the Council of Faculty of Electronics,	Dean
Telecommunications and Information Technology	
	Prof. Ovidiu POP, PhD eng