



## SYLLABUS

1. Data about the program of study

| 1.1     | Institution                    | The Technical University of Cluj-Napoca          |
|---------|--------------------------------|--------------------------------------------------|
| 1.2     | Faculty                        | Electronics, Telecommunications, and Information |
| Faculty |                                | Technology                                       |
| 1.3     | Department                     | Bases of Electronics                             |
| 1.4     | Field of study                 | Electronics and Telecommunications Engineering   |
| 1.5     | Cycle of study                 | Master of Science                                |
| 1.6     | Program of study/Qualification | Integrated Circuits and Systems                  |
| 1.7     | Form of education              | Full time                                        |
| 1.8     | Subject code                   | 7.00                                             |

## 2. Data about the subject

| 2.1 | Subject name                       | Statistical modeling of signals                        |  |  |
|-----|------------------------------------|--------------------------------------------------------|--|--|
| 2.2 | Subject area                       | Signal processing, Statistics                          |  |  |
| 2.3 | Course responsible/lecturer        | Prof. Corneliu Rusu, PhD - Corneliu.Rusu@bel.utcluj.ro |  |  |
| 2.4 | Teachers in charge of applications | Prof. Corneliu Rusu, PhD - Corneliu.Rusu@bel.utcluj.ro |  |  |
| 2.5 | Year of study   2.6 Semester 2     | 2.7 Assessment Exam 2.8 Subject category DA/DI         |  |  |

## 3. Estimated total time

| 3.1 Hours per week                                                               | 3  | of which 3.2 lecture | 2  | 3.3 tutorial / laboratory | 2  |  |
|----------------------------------------------------------------------------------|----|----------------------|----|---------------------------|----|--|
| 3.4 Total hours in curricula                                                     | 70 | of which 3.5 lecture | 28 | 3.6 tutorial / laboratory | 56 |  |
| Time allocation                                                                  |    |                      |    |                           |    |  |
| Manual, lecture material and notes, bibliography                                 |    |                      |    |                           | 69 |  |
| Supplementary study in the library, online and in the field                      |    |                      |    |                           | 30 |  |
| Preparation for seminars/laboratory works, homework, reports, portfolios, essays |    |                      |    |                           | 25 |  |
| Tutoring                                                                         |    |                      |    |                           | 14 |  |
| Exams and tests                                                                  |    |                      |    | 3                         |    |  |
| 3.7 Total hours of individual study 69                                           |    |                      |    |                           |    |  |

| ·····,                       | 05  |
|------------------------------|-----|
| 3.8 Total hours per semester | 125 |
| Number of credit points      | 5   |

### 4. Pre-requisites (where appropriate)

| 4.1 Curriculum | Signal theory, linear algebra |
|----------------|-------------------------------|
| 4.2 Competence | MATLAB programming elements   |

## 5. Requirements (where appropriate)

| 5.1 For lecture               | Amphitheatre, Cluj-Napoca                                  |
|-------------------------------|------------------------------------------------------------|
| 5.2 For applications: Project | Laboratory with standard electronic equipment, Cluj-Napoca |

### 6. Specific competences

|      | After completing this course, the students should know:                                                |
|------|--------------------------------------------------------------------------------------------------------|
|      | <ul> <li>Analysis and synthesis of stochastic processes</li> </ul>                                     |
|      | - Determining a Wiener filter for a given stochastic process                                           |
|      | <ul> <li>Designing LMS or RLS algorithms for a given application</li> </ul>                            |
|      | - Identification of systems by spectral methods Identification of systems through adaptive methods     |
| ŝ    |                                                                                                        |
| nce  |                                                                                                        |
| etei | After completing this course, the students will be able to:                                            |
| upe  | - Setting the parameters in the methods of spectral analysis of signals                                |
| Sor  | <ul> <li>Measurement of system parameters by spectral analysis methods</li> </ul>                      |
| al   | - Designing structures for adaptive filters                                                            |
| ion  | - Deconvolution of signals by cepstral methods                                                         |
| esse | By completing the discipline, the students will acquire practical skills such as:                      |
| rofe | <ul> <li>Programming scientific and technical applications using the MATLAB program package</li> </ul> |
| ā    |                                                                                                        |
|      |                                                                                                        |
|      |                                                                                                        |
|      |                                                                                                        |
|      |                                                                                                        |
|      |                                                                                                        |
| ~    |                                                                                                        |
| ce   | - Know and be able to use methodologies for statistical analysis of signals                            |
| ten  |                                                                                                        |
| bei  |                                                                                                        |
| mo   |                                                                                                        |
| Ū    |                                                                                                        |
| LSS  |                                                                                                        |
| sve  |                                                                                                        |
| ans  |                                                                                                        |
| Ē    |                                                                                                        |
|      |                                                                                                        |

## 7. Discipline objectives (as results from the key competences gained)

| •                          |                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.1                        | The development of professional skills in the field of statistical modeling of signals                                                                                                                                                                                                                                                                 |
| General objectives         | and the design of adaptive filters                                                                                                                                                                                                                                                                                                                     |
| 7.2<br>Specific objectives | <ul> <li>Assimilation of theoretical knowledge regarding the spectral analysis of stochastic signals and the use of appropriate software tools such as MATLAB for statistical modeling of signals</li> <li>Obtaining the necessary skills and abilities to analyze, implement and evaluate the performances of LMS and RLS adaptive filters</li> </ul> |
| Specific objectives        | <ul> <li>Obtaining the necessary skills and abilities to analyze, implement and evaluate the performances of LMS and RLS adaptive filters</li> </ul>                                                                                                                                                                                                   |

#### 8. Contents

| 8.1. Lecture (syllabus)                     | Teaching<br>methods | Notes                   |
|---------------------------------------------|---------------------|-------------------------|
| Analysis of signals and systems             | se<br>io<br>ve      | of<br>her<br>se<br>io   |
| Deconvolution. Invertible systems. Cepstrum | Pres<br>n, n<br>eu  | ow<br>ow<br>oii<br>ores |
| Equations of state                          |                     |                         |

| Stoc                                                   | nastic processes                                        |                     |                       |
|--------------------------------------------------------|---------------------------------------------------------|---------------------|-----------------------|
| Spec                                                   | tral factorization                                      |                     |                       |
| Non-                                                   | parametric methods in spectral estimation               |                     |                       |
| Para                                                   | metric methods in spectral estimation                   |                     |                       |
| Wien                                                   | er filters. The principle of orthogonality              |                     |                       |
| Wien                                                   | er IIR filters. Wiener FIR filters                      |                     |                       |
| Grad                                                   | ient algorithms. The LMS algorithm                      |                     |                       |
| Prop                                                   | erties of the LMS algorithm                             |                     |                       |
| IVIOAI                                                 | Tications and improvements of the LIVIS algorithm       |                     |                       |
| Prop                                                   | ALS algoninin                                           |                     |                       |
| 8.2 L                                                  | Laboratory                                              | Teaching<br>methods | Notes                 |
| 1                                                      | Analysis of signals and systems                         | 0                   |                       |
| 2                                                      | Types of systems                                        | actic               |                       |
| 3                                                      | Equations of state                                      | lida                |                       |
| 4 Stochastic signals                                   |                                                         | of, e               | tation,<br>Iters,     |
| 5 Spectral factorization of stochastic processes       |                                                         | orc                 |                       |
| 6                                                      | Vector stochastic processes                             | ental p<br>sam w    | ument                 |
| 7                                                      | Periodogram                                             |                     |                       |
| 8                                                      | Averaging the periodogram                               | e, te               | nstr<br>Js, d<br>ard  |
| 9                                                      | Spectral density estimation with AR, MA and ARMA models | cise<br>cise        | ry ir<br>boa          |
| 10                                                     | Gradient algorithms. The LMS algorithm                  | d ex                | ato<br>I bc<br>tic    |
| 11                                                     | Algorithms derived from LMS                             | anc<br>e;           | oor;<br>nta<br>gne    |
| 12 Structures and applications of LMS adaptive filters |                                                         | tic                 | " lat<br>mei<br>naç   |
| 13 The RLS algorithm                                   |                                                         | dac                 | e of<br>verii<br>te/r |
| 14                                                     | Structures and applications of RLS adaptive filters     | Dic                 | Use<br>exp<br>whi     |

Bibliography

- 1. C. Rusu, Filtrari adative si modelarea statistica a semnalelor, Ed. Risoprint, 2008.
- 2. M. Hayes, Statistical Digital Processing and Modeling, John Wiley and Sons, 1996.
- 3. J. G. Proakis, D.G. Manolakis. Digital Signal Processing: principles, Algorithms and Applications, 2006.
- 4. G. Zelniker. F. J. Taylor, Advanced Signal Processing. Marcel Dekker, 1994.
- 5. C. Cowan, P. Grant, Adaptive Filters, McGraw-Hill, 1983.

# 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The discipline content and the acquired skills are in agreement with those set up by similar courses organized by top universities in Romania and abroad; also, they meet the requirements set by professional organizations and government agencies in this field, as well as the expectations of companies involved in the design, implementation and testing & characterization of integrated circuits in the automotive industry, such as the potential employers where students carry out practical placements and internships.

#### 10. Evaluations

| Activity type | 10.1 Assessment criteria         | 10.2 Assessment methods     | 10.3 Weight in the |
|---------------|----------------------------------|-----------------------------|--------------------|
|               |                                  |                             | final grade        |
| 10.4 Lecture  | The level of acquired            | - Summative evaluation exam |                    |
|               | theoretical knowledge and        | (theory and problems)       | - E, max 10 pts.   |
|               | skills in analysis and design of |                             | 50%                |
|               | integrated circuits in           |                             |                    |
|               | automotive industry              |                             |                    |

| <b>10.5</b><br>Applications<br>(lab)                               | The level of acquired practical abilities and problem-solving skills | - Individual project | - L, max. 10 pts.<br>50% |  |  |  |
|--------------------------------------------------------------------|----------------------------------------------------------------------|----------------------|--------------------------|--|--|--|
| 10.6 Minimum standard of performance                               |                                                                      |                      |                          |  |  |  |
| • The final mark is calculated as follows: Mark = 0.5 E + 0.5L>4.5 |                                                                      |                      |                          |  |  |  |

| Date of filling in: | Responsible             | Title Surname NAME        | Signature |
|---------------------|-------------------------|---------------------------|-----------|
|                     | Course and applications | Prof. Corneliu Rusu, PhD. |           |

| Date of approval in the Department of Bases of Electronics                                                  | Head of Department                |  |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------|--|
|                                                                                                             | Prof. Sorin HINTEA, PhD eng       |  |
| Date of approval in the Council of Faculty of Electronics,<br>Telecommunications and Information Technology | Dean<br>Prof. Ovidiu Pop, PhD eng |  |
|                                                                                                             |                                   |  |