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https://medium.com/code-heroku/gradient-descent-for-machine-learning-3d871fa48b4c

G. Oltean


https://medium.com/code-heroku/gradient-descent-for-machine-learning-3d871fa48b4c

Gradient Descent for Machine Learning

Gradient Descent Algorithm (GDA)

Gradient descrescator; Gradient descendent; Coborarea gradientulul;
Coborarea pe gradient; Gradient de coborare; Coborarea pantei

Picture this.

You want to be the best basketball player in the world. That means you want to
score every time you shoot, have perfect passes, and always be in the right position
at the right time for your teammates to pass to you.

Basically, you want to reduce as much error as possible. So, what to do?

You train. Much like perfecting basketball, gradient descent is an algorithm meant to
minimize a certain cost function (room for error), so that the output is the most
accurate it can be.

But before you start training, you need to have all your equipment. Who can play
basketball without a ball? So, you need to know the function that you're trying to
minimize (the cost function), its derivatives, and its current inputs, weight, and bias
SO you can get what you want: the most accurate output possible.

GDA is an algorithm used in almost every ML model.
The Gradient Descent serves to find the minimum of the cost function — basically the
lowest point or deepest valley.
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Gradient Descent Algorithm (GDA) - Analogy

A person is stuck in the mountains and is trying to get down (i.e. trying to find the global minimum).
There is heavy fog such that visibility is extremely low. Therefore, the path down the mountain is not
visible, so they must use local information to find the minimum.

They can use the method of gradient descent, which involves looking at the steepness of the hill at their
current position, then proceeding in the direction with the steepest descent (i.e. downhill).

If they were trying to find the top of the mountain (i.e. the maximum), then they would proceed in the
direction of steepest ascent (i.e. uphill).

Using this method, they would eventually find their way down the mountain or possibly get stuck in some
hole (i.e., local minimum or saddle point), like a mountain lake.

However, assume also that the steepness of the hill is not immediately obvious with simple observation,
but rather it requires a sophisticated instrument to measure, which the person happens to have now. It takes
quite some time to measure the steepness of the hill with the instrument, thus they should minimize their
use of the instrument if they wanted to get down the mountain before sunset. The difficulty then is
choosing the frequency at which they should measure the steepness of the hill so not to go off track.

In this analogy, the person represents the algorithm, and the path taken down the mountain represents the
sequence of parameter settings that the algorithm will explore.

The steepness of the hill represents the slope of the error surface at that point. The instrument used to
measure steepness is differentiation (the slope of the error surface can be calculated by taking the
derivative of the squared error function at that point). The direction they choose to travel in aligns with the
gradient of the error surface at that point. The amount of time they travel before taking another
measurement is the learning rate of the algorithm.

[https://en.wikipedia.org/wiki/Gradient_descent#An_analogy for_understanding_gradient_descent]
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Simple Linear Regression - revisited
Linear regression: a trend line that best fits the data

Red dots — facts; blue line — best fits the facts (the data) — linear regression
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Gradient descent algorithm

< Atrial-and-error method
“ Iteratively give us different values of a and b to try

» In each iteration,
» draw a regression line using a and b
» calculate the error for this model
» adjust a and b to minimize the error

» Continue until we get a and b such that the error is minimum.
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Step 1: Start with random
values of aand b
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Step 3: Repeat until converge to

Linear regression - gradient descent

best approximation
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Step 2: Adjust a and b to
reduce errors

Linear regression - gradient descent
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Gradient descent
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Algorithm evolution:

Initial guess Intermediate solution final-best approximation

Gradient descent is not limited to regression problems only.
It Is an optimization algorithm which can be applied to any ML
problem in general — including neuronal networks, deep learning
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Cost Function

A Cost Function / Loss Function evaluate the performance of any machine
learning algorithm.

https://towardsdatascience.com/understanding-the-
mathematics-behind-gradient-descent-dde5dc9be06e

1 Loss function computes the error for a single training example

O Cost function usually is the average of the loss functions for all the
training examples.

A cost function basically tells us  how good’ our model is at making
predictions for given values of aand b

m
1 . N2
Cost function J: Mean squared-error | = —Z(j}(l) — y(l))
m
1=1

ihexample, i=1,..., m

5}(1') predicted values (estimated value)

y(i) reference values (ground truth, target, original, observed)
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J

Minimizing the cost function

1+ 1<
Nz NN 2 N\ 2
=EECWLW®)=QEQ@)
(=1 =1

we want those a and b which give the smallest possible error.
The cost function J can be seen in fact as a simple squared function F:

F = x*

Currently: the ‘green’ dot. 10 —
The aim is to reach the minimum (of the 5: //
cost function) i.e the ‘red’ dot, but you /
don’t know where it is (can’t see it) =

Possible action: di

upward / downward B T T s e
small / big step ? r
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Gradient Descent Algorithm makes these decisions (direction, step size)
efficiently and effectively with the use of derivatives.

Derivative: the slope of the graph at a particular point.
The tangent gives a sense of the steepness of the slope
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The slope at the brown point is less steep than that at the green point; It will take smaller steps
to reach the minimum from the brown point than from the green point.
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Alternative view of GDA dynamic

https://en.wikipedia.org/wiki/Gradient descent

The F function is assumed to be defined
on the plane, and that its graph has a bowl
shape.

The blue curves are the contour lines, that
IS, the regions on which the value of F is
constant.

A red arrow originating at a point shows
the direction of the negative gradient at
that point.

The (negative) gradient at a point is
orthogonal to the contour line going
through that point.

Gradient descent leads to the bottom of
the bowl, that is, to the point where the
value of the function F i1s minimal.
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m m
1 . N 2 1 N 2
Cost function :_Z o — 4@ :_z (1)
=~ 1(y W) =o, 1(6 )
—_— l=

[

The summation part is important, especially with the concept
of batch gradient descent (BGD) vs. stochastic gradient
descent (SGD).

in Batch Gradient Descent, all the training data

IS taken into consideration to take a single step (one training
epoch). We take the average of the gradients of all the training
examples and then use that mean gradient to update our
parameters.

BGD is great for convex or relatively smooth error manifolds.
In this case, we move somewhat directly towards an optimum
solution.

The graph of cost vs epochs is also quite smooth because we
are averaging over all the gradients of training data for a single
step. The cost keeps on decreasing over the epochs.

[https://towardsdatascience.com/batch-mini-batch-stochastic-gradient-descent-7a62echa642a]

BGD vs. SGD

Path taken by BGD

[https://www.geeksforgeeks.org/ml-
stochastic-gradient-descent-
sgd/?ref=rp]
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In BGD we were considering all the examples for every step
of Gradient Descent. But what if our dataset is very huge?

Deep learning models crave for data.
The more the data the more chances of a model to be good.

Suppose our dataset has 5 million examples, then just to take
one step the model will have to calculate the gradients of all
the 5 million examples. This does not seem an efficient way.

To tackle this problem, we have

Stochastic Gradient Descent.

In SGD, we consider just one example at a time to take a
single step (one training epoch).
[https://towardsdatascience.com/batch-mini-batch-stochastic-gradient-descent-
7a62echab42a]

The example is randomly shuffled and selected for

performing the training epoch.

In SGD, since only one example from the dataset is chosen at

random for each iteration, the path taken by the algorithm to

reach the minima is usually noisier than the one for the BGD.

But that doesn’t matter all that much because the path taken
by the algorithm does not matter, as long as we reach the
minima and with significantly shorter training time.

BGD vs. SGD - cont.

One thing to be noted is that, as
SGD is generally noisier than
BGD, it usually took a higher
number of iterations to reach the
minima, because of its
randomness in its descent. Even
though it requires a higher
number of iterations to reach the
minima than BGD, it is still
computationally much less
expensive than BGD.

Path taken by SGD

[https://www.geeksforgeeks.org/ml-stochastic-
gradient-descent-sgd/?ref=rp]
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Gradient Descent for Machine Learning BG D VS SGD — cont

BGD can be used for smoother curves.
SGD can be used when the dataset is large.

BGD converges directly to minima.
SGD converges faster for larger datasets.

But, since in SGD we use only one example at a time, we cannot implement the vectorized
implementation on it. This can slow down the computations. To tackle this problem,

a mixture of BGD and SGD is used:
Mini Batch Gradient Descent

Neither we use all the dataset all at once nor we use the single example at a time.

We use a batch of a fixed number of training examples which is less than the actual dataset and
call it a mini-batch. Doing this helps us achieve the advantages of both BGD and SGD.

We take the average of the gradients of the training examples in the mini-batch and then use that
mean gradient to update the parameters.

Just like SGD, the average cost over the epochs in mini-batch gradient descent fluctuates
because we are averaging a small number of examples at a time.

So, when we are using the mini-batch gradient descent we are updating our parameters
frequently as well as we can use vectorized implementation for faster computations

[https://towardsdatascience.com/batch-mini-batch-stochastic-gradient-descent-7a62ecba6423]
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m m
Gradient Descent  ; _ lz(y(o Y2 = 12(&'))2
Algorithm (GDA) mes mi=

Just to keep things simple, we will assume that we are looking at each error
one at a time (SGD like) — algorithm intuition

y=ax+b e =e(a,b) e is a function of aand b
J=J(e)=]J(a,b) Jisafunctionofaandb

For simplicity, let’s get rid of the summation sign and division by m,
and use only the simplest version of the equivalent loss function F

F = e? F =F(a,b) F is a function of aand b

How does F depend on a and b, in general, but also, in each particular point?
Calculate partial derivatives of F w.r.t. aand b

2 2 Chain
da da da db db db applied
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> Chalin rule

If a variable z depends on the variable y, which itself depends on the
variable x (i.e., y and z are dependent variables), then z, via the
Intermediate variable of y, depends on x as well.

z(y(x))
The chain rule states that:
dz dzdy
dx dy dx

J

G. Oltean



Gradient Descent for Machine Learning

oF _9(e?) . Oe oF _ 9(e?) _ 26%

e = oa — %5q ab _ ob _ ““ap
e=y—y
y=ax+b
e=ax+b—y
de B de _
oa x ob
oF , oF ,
—— = Zex — = Ze
da db
The variation of F w.r.t. a The variation of Fw.r.t. b
° e o e
e X
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0F , JoF ,
— = LeéX — = L€
da / \ dob

error input erro/

Our cost (objective) function
F=e?=(ax+b—7y)?

will be minimized by updating the values for aand b

oF oF
a::a_na b:b—n%

v' 1 - learning rate (constant) — controls the step size to reach the
minimum of the cost function

J

G. Oltean



Gradient Descent for Machine Learning

éor linear regression y=ax+b \

Gradient descent is applied as OF
a = a—n£: a—nex

b:=>b-— n —b ne

& J

On the other hand,
One can cover more Big learning rate Small learning rate Sma”_ Stepslsmal.ler
area with larger learning rates will
steps/higher learning ‘ consume a lot of
rate but are at the risk time to regch the
of overshooting the ' lowest point.
minima and diverge.

https://medium.com/code-heroku/gradient-descent-for-machine-learning-3d871fa48b4c
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Gradient Descent for Machine Learning

1)

2)

3)

4)

3)

6)

GDA for LR- overview

A random point is chosen initially by choosing random values of a and b.
.. . . . _OF OF
Direction of the slope of that point is found by finding — and TS

Since we want to move in the opposite direction of the slope, we will
: : oF oF
multiply -1 with both ry and e

0 oF . . . .
£ and £ gives only the direction, we need to multiply both with

the learning rate (#) to specify the step size of each epoch.

Since

Update the values of a and b such that the error (cost function) is
reduced.

Repeat steps 2 to 5 until we converge at the minimum point of the cost
function

J
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Case study — Python implementation

Problem:
Predict the score of a student based on number of hours studied

®
Data set: 25examples 90 1 ®
(Y
20 ®
Hours - Scores
70 ® o ¢
!
o 60 @ *
S »
A 50
® ®
40 ®
30 [ ] i.
Scores = a-Hours + b o ©® o
20 - @
® @
a=? b=? e

Hours
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Python implementation

Colab notebook

o G. Oltean


https://colab.research.google.com/drive/14z1Xc6x-oXANp5Y2fLVq_I5SuHwmrPcB?usp=sharing
https://colab.research.google.com/drive/14z1Xc6x-oXANp5Y2fLVq_I5SuHwmrPcB?usp=sharing
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HEEER

Results for BGD eta=0.005 # learning rate

epochs a b mse o ~— epoch 0
901 ° ~ epoch 1
@ ©0.000000 ©0.000000 3189,760000 80 - e - epoch 2
1 1.559720 ©.254000 2269,950225 — epoch 3
2 2.872441 ©0.467893 1618.378817 70 - ° ~— epoch 4
3 3.977276 ©.648030 1156,821083 ® - epoch 5
4  4.997142  ©.799755 829.864511 § 601 °* — epoch 6
5 5.689747 ©.927569 598,256198 2 . — epoch 7
6 6.348498 1.835256 434,190321 ° - epoch 8
7 6.902753 1.126005 317.969899 20 ~ @poch 9
8 7.369299  1.202496 235.642058 — epoch 10
9 7.761950 1.266988 177.322914 —— epoch 11
10 8.092497 1.321380 136.010960 — epoch 12
11  8.370517 1.367273 106.746494 ~— epoch 13
12 8.604571 1.406010 86.016183 — epoch 14
13 8.891545 1.438727 71.331263 —— epoch 15
14 8.967309 1.466374 60.928755 ~—— epoch 16
15 9.196807 1.489757 53.559805 ~— epoch 17
16  9.224197 1.509548 48.339756 epoch 18
17 9.322980 1.526318 44.641938 —— epoch 19
18  9.496103  1.540544 42,022431 —— epoch 20
19 9.476045 1.552630 48.166775 ~— epoch 21
20 9.534894  1,562913 38.852212 ~— epoch 22
21  9.584406 1.571679 37.920948 —— epoch 23
22  9.626060 1.579169 37.261202 ~—— epoch 24
23 9.661100 1.585585 36.793795 ~—— epoch 25
24  9.698573  1.591895 36.462635 ~ epoch 26
25 9.715361 1.595845 36.227999 —— epoch 27
26 9.736206  1.599953 36.061714 - epoch 28
27 9.753732 1.683522 35.943869 ~— epoch 29
28  9.768465 1.606636 35.860331 epoch 30
29 9.780847 1.609368 35.801096 1 5 6 E
39 9.791251 1.611778 35.759077
gbé\ G. Oltean
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o B HOE R

Results for SGD eta=0.005 # learning rate

epochs a b mse ° —— epoch 0
90 ° ——— gpoch 1
0 ©.000000 ©.000000 3189.760000 oo —— epoch 2
1 ©.093500 ©.085000 3123.146650 807 —— epoch 3
2 ©.297049 ©.173500 2990.073416 o . —— epoch 4
3 ©.688880 0.318622 2744.537210 ° —— epoch 5
4 1.534462  0.506529 2261.627334 4 604 [ —— epoch 6
5 2.290201 ©.674471 1870.112544 8 ° — epoch 7
6 2.663122 ©.781020 1689.118963 501 epoch 8
7 4.727876  1.023932 875.162959 | ¢ —— epoch @
8 5.948498  1.188881 521.636334 © —— epoch 10
9 6.022661 1.238323 501.706781 30 - oy —— epoch 11
10 7.472838  1.434293 214.024162 o © —— epoch 12
11 7.515027  1.446347 207.532242 20 1 ° —— epoch 13
12 7.555106  1.482783 200.891413 . ; . . . —— epoch 14
13 7.545222  1.478485 202.406889 z o e &2 —— epoch 15
14  7.611899  1.496506 192.567917 —— epoch 16
15  7.665041  1.531934 184,472395 —— epoch 17
16  7.740134  1.571457 173.623504 epoch 18
17 7.778163  1.606029 167.981104 —— epoch 19
18  7.810468 1.617993 163.638347 —— epoch 20
19  7.980172 1.637958 142.820156 —— epoch 21
20 7.945380 1.627086 147.067996 —— epoch 22
21 7.993791  1.659360 140.859538 —— epoch 23
22 8.532966  1.724321 87.524882 —— epoch 24
23 8.468489 1.704172 93.092398 —— epoch 25
24  8.854233 1.746101 64.779889 —— epoch 26
25 8.828801 1.741014 66.377319 —— epoch 27
26  9.060366 1.766184 53.567209 epoch 28
27  9.291415 1.808193 44.109021 epoch 29
28 9.232466  1.792261 46.221913 —— epoch 30
29 9.699000 1.852850 35.974505 1 2 5 6 7
30 9.572765  1.813402 37.425302
B G. Oltean
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Gradient Descent - Error Evolution

Results: BGD vs. SGD

Gradient Descent - Error Evolution

04 — S
& Gradient Descent - Error Evolution
For the data set of only 25 examples
o BGD execution time for 1000 epochs:
‘e 0:00:01.555489 [s]
N SGD execution time for 1000 epochs:
0:00:00.801469 [s]

G. Oltean
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Synthesis
y=ax+b
where

y isthe predicted value,
a isthe slope (weight), b isthe intercept (bias).

The objective of linear regression is to find the parameters a

and b that minimize a cost function, typically the Mean
Squared Error (MSE), defined as

m
1 . )
- 50) _ 4, @)
J(a,b) mél(y yW)
=

9 is the i-th predicted value,

y(i) is the 7-th target value,
m is the number of examples (size of the dataset).

QQ\ G. Oltean
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Synthesis

At each iteration the parameters & and b are updated:

d]
a:=a—n£
d]
b:=b-=nz,

where

a:=a-—nex
b:=b —ne

1 is the learning rate, which controls the size of the steps we
take toward the minimum of the cost function

e =y — yistheerror

J
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Synthesis

Gradient Descent Algorithm Steps for Linear Regression

1. Initialize the parameters aand b with some random
values.

2. Compute the predictions $) = ax® + p

3. Compute the cost function / (g, b),

4. Update the parameters gand b using the gradient
descent update rules.

5. Repeat steps 2-4 until the cost function converges (i.e.,

changes very little between iterations) or until a fixed
number of iterations is reached.

J
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| Synthesis
For BGD (batch gradient descent)

Uses the entire dataset for every update (in each training epoch)

m
1 o
LI NG IO N
e =23 50-y0s
1=

1 m
:_E: NOENO
e m.l(y y+)
L=

m

1 . . .

a:=a—nex=a-—n EZ(:)’}(l)_y(l))_x(l)
=1

m
1 o
b:=b-ne=b—n— E @Y —-y®)
mi=1

J
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Synthesis

For SGD (Stochastic gradient descent)

In each training epoch, only one training example (x(j), y(j)) .
randomly selected from the training set is used to update the
parameters.

a:=a-—nex =a-— n()’}(])_y(]))x(])

b:=b-ne=b-n@Y-y")

J
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30

25 4

Output

15 ~

10 ~

Gradient Descent Dynamics

®

T
10.0

T
12.5

T
15.0

T
17.5

T
20.0

Input

T
22.5

T
25.0

T
27.5

T
30.0

Problem

Output = a - Input + b

a =? b =?

a) Perform the operations for the 15t training epoch of GDA considering
the starting point a =20, b =0, » = 0.0005, in both cases: BGD and SGD.
b) What are the values of the cost function (MSE) in the starting point

and after the 1%t training epoch in both cases?
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