
Iris flower
Case study

Multiclass Classification using
ANN

(Pattern recognition)

Problem to be solved
❖ Classify Iris flowers

G. Oltean

The famous Iris database was first used by Sir R.A. Fisher. The dataset is taken from
Fisher's paper.

▪ Fisher, R.A. "The use of multiple measurements in taxonomic problems“ Annual
Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to Mathematical
Statistics" (John Wiley, NY, 1950).

This is perhaps the best-known database to be found in the pattern recognition
literature.

The data set contains 3 classes of 50 instances each (balanced dataset), where
each class refers to a type of iris flower.

One class is linearly separable from the other 2; the latter are not linearly separable
from each other.

Iris setosa Iris versicolor

Iris virginica

Iris flowers

Iris dataset

G. Oltean

Dataset Characteristics
Number of Instances: 150 (50 in each of three classes)
Number of Attributes: 4 numeric, predictive attributes and the class

Attribute Information
 - sepal length in cm
 - sepal width in cm
 - petal length in cm
 - petal width in cm

Class
 - Iris-Setosa
 - Iris-Versicolour
 - Iris-Virginica

Summary Statistics
============== ==== ==== ======= ===== ========
 Min Max Mean SD Class Correlation
============== ==== ==== ======= ===== ========
sepal length: 4.3 7.9 5.84 0.83 0.7826
sepal width: 2.0 4.4 3.05 0.43 -0.4194
petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)
petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)
============== ==== ==== ======= ===== ========
Missing Attribute Values: None
Class Distribution: 33.3% for each of 3 classes.
Creator: R.A. Fisher

Features

40

45

50

55

60

65

70

75

80

Lungime

sepala

20

25

30

35

40

45

Latime

sepala

10

20

30

40

50

60

70

Lungime

petala

0

5

10

15

20

25

Latime

petala

Setosa

Versicolor

Virginica

Sepal
length
[mm]

Sepal
width
[mm]

Petal
length
[mm]

Petal
width
[mm]

Features

45 50 55 60 65 70 75 80

20

25

30

35

40

45

lungime sepala

la
ti
m

e
 s

e
p
a
la

Setosa

Versicolor

Virginica

Two-dimensional representation of the Iris dataset

Sepal length [mm]

Se
pa

l w
id

th
 [m

m
]

Load dataset

Data shape:

X shape: (150, 4)
y shape: (150,)

First 5 samples of class 0 – Setosa

[[5.1 3.5 1.4 0.2]
 [4.9 3. 1.4 0.2]
 [4.7 3.2 1.3 0.2]
 [4.6 3.1 1.5 0.2]
 [5. 3.6 1.4 0.2]]

First 5 labels of class 0 – Setosa

[0 0 0 0 0]

First 5 samples of class 1 – Versicolor

[[7. 3.2 4.7 1.4]
 [6.4 3.2 4.5 1.5]
 [6.9 3.1 4.9 1.5]
 [5.5 2.3 4. 1.3]
 [6.5 2.8 4.6 1.5]]

First 5 labels of class 1 – Versicolor

[1 1 1 1 1]

First 5 samples of class 2 – Virginica

[[6.3 3.3 6. 2.5]
 [5.8 2.7 5.1 1.9]
 [7.1 3. 5.9 2.1]
 [6.3 2.9 5.6 1.8]
 [6.5 3. 5.8 2.2]]

First 5 labels of class 2 – Virginica

[2 2 2 2 2]

Iris flowers samples

Normalize dataset
Data normalization is often a crucial step in machine learning, especially for
algorithms like the ANN

1. Feature Scaling and Algorithm Performance

➢ Gradient Descent-Based Algorithms (like ANNs): These algorithms use gradient descent to

find the optimal model parameters.

o If features have vastly different scales, the loss function will have an elongated shape,

making it difficult for gradient descent to converge efficiently.

o Normalization helps to create a more spherical loss function, leading to faster and more

stable convergence.

➢ Distance-Based Algorithms (like k-Nearest Neighbors): These algorithms rely on calculating

distances between data points.

o Features with larger ranges can disproportionately influence distance calculations,

potentially leading to inaccurate results.

o Normalization ensures that all features contribute equally to distance measures.

Normalize dataset

2. Preventing Feature Dominance

➢ Without normalization, features with larger values can dominate the model's learning process,
even if they are not necessarily more important. Normalization levels the playing field, allowing
the model to learn relationships between all features more effectively.

3. Improving Numerical Stability

➢ In some cases, features with very large or very small values can lead to numerical instability
during calculations. Normalization can help to mitigate these issues.

4. Enhanced Model Interpretability

➢ When features are normalized, the model's coefficients (or weights) become more comparable,
making it easier to interpret the relative importance of different features.

Specific to our ANN Model:

✓ The ANN model uses the 'Adam' optimizer, which is a type of gradient descent algorithm.

Normalizing the Iris dataset features (sepal length, sepal width, petal length, petal width)

ensures that features with different scales (like sepal length and petal width) do not

disproportionately influence the weight updates during training. This leads to faster

convergence and potentially better model performance.

In summary, normalization is often necessary to:

➢ Improve the performance and stability of many machine learning algorithms.

➢ Prevent feature dominance and ensure fair contribution from all features.

➢ Enhance numerical stability during calculations.

➢ Improve the interpretability of the model.

Normalize dataset

MinMaxScaler
• MinMaxScaler is a data preprocessing technique in scikit-learn used for feature scaling.
• It transforms features by scaling them to a given range, typically between 0 and 1.
• This process is also known as min-max normalization.

x_scaled = (x - x_min) / (x_max - x_min)

✓ Preserves Data Shape: MinMaxScaler preserves the original distribution of the data, meaning that the
relative relationships between data points are maintained after scaling.

✓ Handles Outliers: Outliers can influence the scaling process, but their impact is limited since
MinMaxScaler uses the minimum and maximum values of the entire dataset for scaling.

✓ Simple and Intuitive: The scaling process is easy to understand and interpret.
✓ Suitable for Algorithms Sensitive to Feature Ranges: Algorithms like k-Nearest Neighbors, Support

Vector Machines, and Neural Networks often benefit from feature scaling using MinMaxScaler.

▪ Sensitive to New Data: If new data points with values outside the original range are introduced,
the scaler needs to be refitted to include these values, which can affect the scaling of existing data.

▪ May Squash Data: If the data has a wide range, MinMaxScaler can compress the data into a
smaller range, potentially losing some information.

MinMaxScaler

15 / 20

Initial dataset Subtract mean (zero out the mean) Normalize the variance

Use the same 𝝁, 𝝈 to

normalize all data sets

✓ Training

✓ Validation

✓ Test

Standard Scaler 𝑥_𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 − 𝑥_𝑚𝑒𝑎𝑛

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

Applied separately on
each data feature

Standardizes features by
removing the mean and
scaling to unit variance.

1. Centering: The mean of the feature is subtracted from each feature value (x).

 This shifts the distribution of the feature so that its mean becomes 0.

2. Scaling: Each centered feature value is then divided by the standard deviation.

 This scales the distribution so that its variance becomes 1.

16 / 20

Standard Scaler
sepal length (cm): Mean: 5.84 Std_dev: 0.83

sepal width (cm): Mean: 3.06 Std_dev: 0.43

petal length (cm): Mean: 3.76 Std_dev: 1.76

petal width (cm): Mean: 1.20 Std_dev: 0.76

Train Val Test

Data

Train set: used to learn the parameters of the model

Val set (validation set): supervises the learning generality (identify overfitting);

Test set: used as a proxy for unseen data and evaluate our model on test-set (brand-new data set)

Data set split

Small / moderate data set:
• 70% / 20% /10%

Now we will split the full data set in 2 subsets:
o test_set 10% of the entire data set (15 examples)
o train_set 90% of the entire data set

▪ Later on, when we will use .fit method to train our ANN model; from the train_set
• 22.22% (30 examples) will be used for validation
• 77.78% (105 examples) for real model trainig

Data set split

X_train shape: (135, 4)
X_test shape: (15, 4)
y_train shape: (135,)
y_test shape: (15,)

labels for test set are:
[1 0 2 1 1 0 1 2 1 1 2 0 0 0 0]

ANN model Secvential vs. Functional API
Sequential API

• Structure: Builds a linear stack of layers, where each layer has exactly one input and one output.

• Simplicity: Easy to use for simple models with a straightforward flow.

• Limitations: Not suitable for complex architectures like those with multiple inputs/outputs,
shared layers, or non-linear connections.

Functional API

• Structure: Defines a computational graph where layers are connected like functions, allowing
for flexible and complex topologies.

• Flexibility: Can build models with multiple inputs/outputs, shared layers, residual connections,
and more.

• Control: Offers greater control over data flow and model structure.

ANN model Secvential vs. Functional API

Feature Sequential API Functional API
Model Structure Linear stack of layers Flexible computational graph

Complexity Simple models Complex models

Flexibility Limited Highly flexible

Inputs/Outputs Single input, single output Multiple inputs/outputs

Layer Sharing Not supported Supported

Non-linear Connections Not supported Supported

Ease of Use Easier for beginners More advanced

Key Differences

When to Use Which

• Sequential API: Ideal for simple models with a sequential flow of layers, like basic classification or
regression tasks.

• Functional API: Preferred for complex architectures, models with multiple inputs/outputs, shared layers, or
when you need more control over the data flow and model structure (dynamic architecture – conditions,
loops).

ANN model Secvential

How it Works:

1. Create a Sequential Model: You start by creating an instance of
the keras.Sequential class.

2. Add Layers: You add layers to the model using the add() method. Each layer you
add is stacked on top of the previous one.

3. Compile the Model: You compile the model using compile(), specifying the
optimizer, loss function, and metrics.

4. Train the Model: You train the model using fit(), providing the training data and
labels.

5. Make Predictions: You use the trained model to make predictions on new data
using predict().

ANN model Secvential version 1

ANN model Secvential version 2

ANN model Secvential

ANN model Functional API

1. Define Input Layers: You start by defining input tensors using keras.Input(), specifying the
shape and data type of the input data.

2. Create Layers as Functions: Each Keras layer can be treated as a callable function. You
apply a layer to an input tensor to produce an output tensor, like this:

output_tensor = layer(input_tensor).

3. Connect Layers: You connect layers by passing the output tensor of one layer as the
input tensor to the next layer, creating a computational graph.

4. Define the Model: You create a keras.Model instance, specifying the input tensors and
output tensors of the model.

5. Compile the Model: You compile the model using compile(), specifying the optimizer, loss
function, and metrics.

6. Train the Model: You train the model using fit(), providing the training data and labels.

7. Make Predictions: You use the trained model to make predictions on new data
using predict().

ANN model Functional API

ANN model Functional API

ANN model Functional API

The tf.keras.Model class features built-in training and evaluation methods:

• tf.keras.Model.fit: Trains the model for a fixed number of epochs.

• tf.keras.Model.predict: Generates output predictions for the input samples.

• tf.keras.Model.evaluate: Returns the loss and metrics values for the model; configured via
 the tf.keras.Model.compile method.

These methods give you access to the following built-in training features:

• Callbacks. You can leverage built-in callbacks for early stopping, model checkpointing,
and TensorBoard monitoring. You can also implement custom callbacks.

• Distributed training. You can easily scale up your training to multiple GPUs, TPUs, or devices.

• Step fusing. With the steps_per_execution argument in tf.keras.Model.compile, you can process
multiple batches in a single tf.function call, which greatly improves device utilization on TPUs.

For a detailed overview of how to use fit, see the training and evaluation guide. To learn how to
customize the built-in training and evaluation loops, see Customizing what happens in fit().

[https://www.tensorflow.org/guide/keras]

ANN model Methods

https://www.tensorflow.org/api_docs/python/tf/keras/callbacks
https://www.tensorflow.org/tensorboard
https://www.tensorflow.org/guide/keras/writing_your_own_callbacks
https://www.tensorflow.org/guide/keras/distributed_training
https://www.tensorflow.org/guide/keras/training_with_built_in_methods
https://www.tensorflow.org/guide/keras/customizing_what_happens_in_fit

Configure (compile) the ANN - loss function
sparse_categorical_crossentropy vs. binary_crossentropy

sparse_categorical_crossentropy

• When to use: This loss function is used for multi-class classification problems where the target labels
are integers representing the classes.

• Example: In Iris dataset example, there are 3 classes (Setosa, Versicolor, Virginica), and the target labels are
encoded as 0, 1, and 2 respectively.

• How it works: It calculates the cross-entropy loss between the true labels and the predicted probabilities for
each class. The model outputs a probability distribution over the classes, and the loss function penalizes the
model if the predicted probabilities don't align with the true class label.

binary_crossentropy

• When to use: This loss function is primarily used for binary classification problems where the target labels
are either 0 or 1.

• Example: Classifying images as either "cat" or "dog" is a binary classification problem. The target labels
would be 0 for "cat" and 1 for "dog".

• How it works: It calculates the cross-entropy loss between the true label (0 or 1) and the predicted probability
of the positive class (usually class 1). The model outputs a single probability value, and the loss function
penalizes the model if this probability doesn't match the true label.

Key Differences

1. Number of classes: sparse_categorical_crossentropy is for multi-class problems (more than 2

classes), while binary_crossentropy is for binary problems (2 classes).

2. Target label format: sparse_categorical_crossentropy expects integer labels,

whereas binary_crossentropy expects labels to be either 0 or 1.

3. Output layer activation: With sparse_categorical_crossentropy, you typically use

a softmax activation in the output layer to produce a probability distribution over the classes.

With binary_crossentropy, you usually use a sigmoid activation to produce a single probability

value.

Configure (compile) the ANN - loss function
sparse_categorical_crossentropy vs. binary_crossentropy

Configure (compile) the ANN
Configures the learning process for the ANN model by specifying

▪ how it will measure its performance (loss function)
▪ how it will update its weights (optimizer)
▪ what metrics it will track during training

loss='sparse_categorical_crossentropy' - specifies the loss function to be used during training.
o sparse_categorical_crossentropy' is suitable for multi-class classification where the target labels are

integers representing the classes (0, 1, 2, etc.).
o It calculates the cross-entropy loss between the true labels and the predicted probabilities.

optimizer='Adam'- specifies the optimization algorithm to use during training.
o 'Adam' is a popular adaptive learning rate optimization algorithm that adjusts the learning rate for each

parameter based on its past gradients.

metrics=['accuracy'] - Specifies the metrics to be evaluated during training and testing.
o 'accuracy' is a common metric for classification, representing the percentage of correctly classified

samples.

Configure (compile) the ANN

Train the ANN model
In essence, model.fit() is where the actual learning happens for your neural network. Think of it as
the process of teaching your model to recognize patterns and make accurate predictions based on
the data you provide.

1. Data Input (X_train, y_train): You provide the training data to the fit() function.

X_train represents the input features (sepal length, sepal width, petal length, petal width in your
case), and y_train represents the corresponding target labels (species of Iris). This is the
information your model will learn from.

2. Epochs (epochs=600): An epoch refers to one complete pass through the entire training
dataset. You're specifying that the model should iterate over the data 600 times. This allows the
model to gradually adjust its weights and improve its predictions.

3. Verbose (verbose=1): This parameter controls the amount of output displayed during training. A
value of 1 means you'll see progress updates during each epoch.

4. Batch Size (batch_size=32): Instead of updating the model's weights after every single training
sample, you're using batches of 32 samples. This helps make the training process more efficient
and stable. The model calculates the average loss for a batch and updates its weights accordingly.

Train the ANN model
5. Validation Split (validation_split=0.2): You're setting aside 20% of your training data as a
validation set. This subset is used to monitor the model's performance during training. It helps you
detect overfitting, which is when the model starts to memorize the training data too well and performs
poorly on unseen data.

6.Training Process:

• The model iterates through the training data in batches.

• For each batch, it calculates the loss using the specified loss function.

• It then uses the optimizer (Adam) to update the weights of the model to minimize the loss.

• This process is repeated for the specified number of epochs.

7.Validation:

• After each epoch, the model's performance is evaluated on the validation set.

• This helps you track how well the model is generalizing to unseen data.

• If the validation loss starts increasing while the training loss continues to decrease, it might be a
sign of overfitting.

8.Output (hist):

• The fit() function returns a history object (hist in your code) that contains information about the
training process, such as the loss and accuracy values for each epoch.

•You can use this history object to plot graphs and analyze the model's learning progress.

Train the ANN model

Train the ANN model

Train the ANN model

Analyze the learning progress (learning rate = 0.003)

Train Loss = 0.0692
Validation Loss = 0.0251
Test_loss = 0.0811

Train Accuracy = 0.9815
Validation Accuracy = 1.0000
Test_accuracy = 0.9333

Evaluate the ANN model

Predicted [1 0 2 1 1 0 1 2 2 1 2 0 0 0 0]

Target [1 0 2 1 1 0 1 2 1 1 2 0 0 0 0]

Raw predictions:

Understanding
predictions

[[0. 0.983 0.016]
[0.999 0.001 0.]
[0. 0.001 0.999]
[0. 0.95 0.05]
[0. 0.976 0.024]
[0.998 0.002 0.]
[0.008 0.992 0.]
[0. 0.032 0.968]
[0. 0.426 0.574]
[0.003 0.996 0.001]
[0. 0.195 0.804]
[0.998 0.002 0.]
[1. 0. 0.]
[0.998 0.002 0.]
[1. 0. 0.]]

ANN model in
prediction mode

Test data Train
(+ validation)
data

(learning rate = 0.003)

Analyze the learning progress (learning rate = 0.2)

Test data Train
(+ validation)
data

(learning rate = 0.2)

Evaluate the ANN model (learning rate = 0.0002)

Test data Train
(+ validation)
data

(learning rate = 0.0002)

Purpose of Saving

❑ Persistence: Saving the model allows you to preserve its learned weights and architecture.

❑ Reusability: You can load the saved model later to avoid retraining, saving time and
resources.

❑ Sharing: You can share your trained model with others, enabling them to use it without
training from scratch.

How it Works

❑ model.save(): This function is a core part of Keras (and TensorFlow) and handles the
process of saving your model.

❑ 'ANN_iris.keras': This argument specifies the file path and name where the model will be
saved.

➢ Using the .keras extension is recommended for saving models, although .h5 can also
be used for legacy compatibility.

Save the ANN model

Benefits of .keras Format

❖ Self-Contained: The .keras format saves your model's architecture, weights, training
configuration, and even the optimizer state. It's essentially a complete snapshot of your
model.

❖ Human-Readable: The model architecture is saved in a JSON-like format, making it
relatively easy to understand and modify.

❖ Easy Loading: Loading a model saved in this format is straightforward, as you'll see in
the model.load_model() function in the code.

What happens when you save

➢ A directory named ANN_iris.keras will be created in your Colab environment's current
working directory.

➢ This directory will contain the necessary files, including the model's architecture,
weights, and configuration, to allow you to load and reuse it later.

➢ This method provides a reliable and straightforward approach to saving your trained
model, ensuring you can reuse it for predictions and share it efficiently.

Save the ANN model

ANN model in JSON format

https://didatec-my.sharepoint.com/personal/gabriel_oltean_campus_utcluj_ro/Documents/0_GabiHardOneDrive/Didactic/Cursuri/AIF/2425/12_Iris_ANN_Json.txt

Purpose of Loading

❑ Reuse: Loading allows you to bring your previously saved model back into memory and
make predictions or perform other tasks without retraining.

❑ Efficiency: Saves the time and resources that would be required for retraining a model from
scratch.

❑ Sharing: Enables others to use a trained model that you've shared with them.

How it Works

❖ keras.models.load_model(): This function from the Keras API is specifically designed to
load saved models.

❖ 'ANN_iris.keras': This argument provides the file path to the model you want to load. This
should match the name you used when saving the model.

Load the ANN model

What happens when you load

❑ The load_model() function reads the saved model files (ANN_iris.keras in this case).

❑ It reconstructs the model's architecture based on the saved configuration.

❑ It loads the trained weights into the model's layers.

❑ The loaded model is assigned to the variable loaded_model, which can now be used for
prediction or any other operations.

Benefits:

❖ Seamless Continuation: You can seamlessly pick up where you left off with your model.

❖ Reduced Training Time: No need to retrain your model, which can be computationally
expensive, especially for complex architectures.

❖ Model Sharing: Makes it easy to share models within your team or with the wider
community.

❖ Using the Loaded Model: After loading, the loaded_model object is a fully functional Keras
model, identical to the one you trained and saved.

Load the ANN model

	Slide 1: Iris flower Case study
	Slide 2: Problem to be solved
	Slide 3: Iris flowers
	Slide 4: Iris dataset
	Slide 5: Features
	Slide 6: Features
	Slide 7
	Slide 8: Load dataset
	Slide 9: Iris flowers samples
	Slide 10: Normalize dataset
	Slide 11: Normalize dataset
	Slide 12: Normalize dataset
	Slide 13: MinMaxScaler
	Slide 14: MinMaxScaler
	Slide 15: Standard Scaler
	Slide 16: Standard Scaler
	Slide 17
	Slide 18: Data set split
	Slide 19: Data set split
	Slide 20: ANN model
	Slide 21: ANN model
	Slide 22: ANN model
	Slide 24: ANN model
	Slide 25: ANN model
	Slide 26: ANN model
	Slide 27: ANN model
	Slide 28: ANN model
	Slide 29: ANN model
	Slide 30: ANN model
	Slide 31: ANN model Methods
	Slide 32: Configure (compile) the ANN - loss function
	Slide 33: Configure (compile) the ANN - loss function
	Slide 34: Configure (compile) the ANN
	Slide 35: Configure (compile) the ANN
	Slide 36: Train the ANN model
	Slide 37: Train the ANN model
	Slide 38: Train the ANN model
	Slide 39: Train the ANN model
	Slide 40: Train the ANN model
	Slide 41: Analyze the learning progress
	Slide 42: Evaluate the ANN model
	Slide 43
	Slide 44: ANN model in prediction mode
	Slide 45: Test data
	Slide 46: Analyze the learning progress (learning rate = 0.2)
	Slide 47: Test data
	Slide 48: Evaluate the ANN model (learning rate = 0.0002)
	Slide 49: Test data
	Slide 50: Save the ANN model
	Slide 51: Save the ANN model
	Slide 52: Load the ANN model
	Slide 53: Load the ANN model

