
Regression using ANN
(function approximation)

Case study
using synthetic data

(numerical and categorical features)

1. Data Generation and Preprocessing:

• Create synthetic data and standardizing it for training.

• Add categorical data and use one-hot encoder

• Understanding data – data correlation

2. Building a Deep Neural Network:

• How to design a regression-focused DNN using Keras.

3. Training the Model:

• Training with validation splits and visualizing training progress.

• Use regularization (dropout) and Early stopping

4. Model Evaluation:

• Calculating Mean Squared Error and understanding model performance.

5. Making Predictions:

• Converting scaled predictions back to the original scale for interpretation.

Content

Dataset generation

Dataset Description
The dataset used is a synthetic dataset with the next characteristics:

1. Numerical Features:

• The dataset contains num_samples = 3000 examples with num_features = 8 numerical features

• These features are generated randomly using np.random.rand, which creates values between 0 and 1,
filling an array with the specified shape (num_samples, num_features).

• 3000 rows (samples) and 8 columns (features).

• This random data is then transformed in various non-linear ways using functions like sin, cos, exp,
powers, and sums, to create complex relationships within the features and contribute to the target
variable's value

2. Categorical Features:

• Two categorical features (xcat_1, xcat_2) are added using np.random.choice.

• These are generated by randomly selecting values from the categories ['A', 'B', 'C’].

3. Combining into a DataFrame:

•All these features (numerical and categorical) are combined into a pandas DataFrame called X for
easier handling.

•The target variable (y) is also included in the final DataFrame called combined_df.

4. Target Variable (y):

•The target variable is calculated using a combination of these non-linear interactions between the
numerical features.

•Gaussian noise (randomness) is then added to the target variable, controlled by noise_level, to make
the prediction task more challenging.

Shape and Format:

•The final dataset has 3000 samples (rows) and 10 features (columns): 8 numerical and 2 categorical.

•The target variable (y) is a separate array or Series with 3000 values.

Purpose:

•The dataset is designed to be "difficult" in the context of regression problems.

•The non-linear relationships and noise introduced in the target variable make it challenging for simple
models to make accurate predictions. This is a common practice to evaluate the performance of more
complex models like deep neural networks.

Dataset generation

Dataset
generation

Dataset
generation

Shape of X (features): (3000, 10)
Shape of y (target): (3000, 1)

Dataset structure

Data visualization

minimum: [1.00076199]
maximum: [5.81300314]
bin size: [0.16040804]

Data visualization

Correlation matrix for numerical features

Understand how each feature

is related to the target variable

and other features.

The correlation matrix is a
table that shows the
correlation coefficients
between multiple variables.

Each cell in the table
represents the correlation
between two variables.

The correlation coefficient,
typically denoted by "r", ranges
from -1 to +1.

❖ Positive Correlation (r > 0): Indicates that as one
variable increases, the other variable tends to
increase as well. A value closer to +1 indicates a
stronger positive correlation

✓ important predictor

❖ Negative Correlation (r < 0): Indicates that as one
variable increases, the other variable tends to
decrease. A value closer to -1 indicates a stronger
negative correlation

✓ important predictor

❖ No Correlation (r ≈ 0): Indicates that there is no linear
relationship between the two variables. Changes in
one variable do not predictably affect the other

➢ may be relevant, but their influence is less direct

Check for multicollinearity:

If two features have a very high correlation with each other (e.g., above 0.8 or 0.9), it could
indicate multicollinearity. This means they provide similar information, and one of them
might be redundant in your model. - not the case here

Correlation
coefficient = 0.64

Correlation
coefficient = 0.4

Convert categorical data into a numerical format

Categorical data refers to variables that represent
categories or labels rather than numerical values.

➢ “color” could have categories like “red”
“blue” and “green”

➢ or in general one could have categories like
“A” “B” and “C”

❑Machine learning algorithms, however, typically
require numerical input to perform
computations.
✓ Converting categorical data into numerical

form allows these algorithms to process and
learn from the data.

Convert categorical data into a numerical format

using label encoder Label Encoding is a technique used to convert categorical data (data that is
represented by categories or labels) into numerical data.

This is often necessary because many machine learning algorithms work
best with numerical input.

How it works:

1. Fit: The Label Encoder analyzes the categorical feature (column) to identify all the unique categories or labels present. This
is done using the fit method.

2. Transform: Once it has learned the categories, it assigns a unique numerical label to each category.

It starts from 0 and assigns consecutive integers to each distinct category. This is done using the transform method.

3. Fit_transform: The fit_transform method is a convenient combination. It performs both steps in a single call.

A → 0
B → 1
C → 2

Convert categorical data into a numerical format

using label encoder

Limitations:

▪ Ordinality assumption: Label Encoding might introduce an ordinal relationship between categories
where none exists.

o For example, assigning 0 to A, 1 to B, 2 to C might imply that B is somehow between A and C
which might not be true.

▪ Impact on models: This implied ordinality can mislead some algorithms, especially distance-based
algorithms like KNN.

• Simplicity: It's a simple and
straightforward technique to apply.

• Preserves information: It preserves
the order of categories if there is a
natural ordering.

Convert categorical data into a numerical format

using One-Hot Encoding

• For each unique category in a categorical feature, One-Hot Encoding creates
a new binary feature (column).

• If a data point belongs to that category, the corresponding binary feature
is set to 1; otherwise, it's set to 0.

Convert categorical data into a numerical format

using One-Hot Encoding

Benefits of One-Hot Encoding:

• Avoids ordinality: It doesn't introduce any ordinal relationship between categories.

• Suitable for most algorithms: Works well with a wide range of machine learning
algorithms.

Considerations:

• Increased dimensionality: Can significantly increase the number of features,
especially with high-cardinality categorical features (features with many unique
categories). This can lead to increased computational cost and potential
overfitting.

• Sparsity: The resulting data can be sparse (lots of zeros), which might require
specialized data structures or algorithms.

Convert categorical data into a numerical format

using One-Hot Encoding

Collinearity issue

Collinearity, or multicollinearity, occurs when two or more predictor variables
(features) in a regression model are highly correlated with each other.

This can cause problems in the model, such as:

• Unstable coefficients: The estimated coefficients of the collinear variables can
become unstable and vary significantly with small changes in the data.

• Reduced interpretability: It becomes difficult to interpret the individual effects
of collinear variables on the target variable.

• Inflated standard errors: The standard errors of the coefficients can increase,
making it harder to determine statistical significance.

Addressing Collinearity in One-Hot Encoded Data

One-Hot encoding can introduce perfect collinearity, also known as the "dummy
variable trap."

This happens because the created dummy variables are perfectly linearly dependent.

 If you have three categories (A, B, C) and you create three dummy variables (A, B, C),
then knowing the values of two of the dummies automatically determines the value of
the third.

To avoid this, you can drop one of the dummy variables for each categorical feature.
This is called dummy variable dropping and is a common practice to address
collinearity in One-Hot encoded data.

Convert categorical data into a numerical format

using One-Hot Encoding

Convert categorical data into a numerical format

using One-Hot Encoding

Shape of X (features): (3000, 12)
Shape of y (target): (3000, 1)

Encoded Dataset

Train Val Test

Data

Train set: used to learn the parameters of the model

Val set (validation set): supervises the learning generality (identify overfitting);

Test set: used as a proxy for unseen data and evaluate our model on test-set (brand-new data set)

Data set split

Now we will split the full data set in 2 subsets:
o test_set 20% of the entire data set (600 examples)
o train_set 80% of the entire data set

▪ Later on, when we will use .fit method to train our ANN model; from the train_set
• 22.22% (30 examples) will be used for validation
• 77.78% (105 examples) for real model trainig

Data set split

Shape of X_train: (2400, 12)
Shape of X_test: (600, 12)
Shape of y_train: (2400, 1)
Shape of y_test: (600, 1)

Normalize dataset
Both sets

Train set
Test set

• Numerical features
• Targets
• Encoded features are not normalized

26 / 20

Initial dataset Subtract mean (zero out the mean) Normalize the variance

Use the same 𝝁, 𝝈 to

normalize all data sets

✓ Training

✓ Validation

✓ Test

Standard Scaler 𝑥_𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 − 𝑥_𝑚𝑒𝑎𝑛

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

Applied separately on
each data feature

Standardizes features by
removing the mean and
scaling to unit variance.

1. Centering: The mean of the feature is subtracted from each feature value (x).

 This shifts the distribution of the feature so that its mean becomes 0.

2. Scaling: Each centered feature value is then divided by the standard deviation.

 This scales the distribution so that its variance becomes 1.

ANN model Secvential

ANN model summary and diagram

ANN model summary and diagram

A regularization technique used in deep learning to prevent overfitting. Overfitting occurs
when a model learns the training data too well, including its noise and random fluctuations,
resulting in poor performance on unseen data.

How it Works:

1. Validation Set: A portion of the training data is set aside as a validation set. This set is
not used to train the model directly.

2. Monitoring: During training, the model's performance (e.g., loss or accuracy) is
evaluated on both the training set and the validation set.

3. Stopping Criteria: If the model's performance on the validation set starts to worsen (e.g.,
validation loss increases or validation accuracy decreases) while the performance on the
training set continues to improve, it indicates that the model is starting to overfit.

4. Early Stop: Training is stopped before the model has a chance to fully overfit the training
data. The model parameters from the epoch with the best performance on the validation
set are saved and used as the final model.

Early stopping

Benefits of Early Stopping:

•Prevents Overfitting: Stops training before the model
overfits, leading to better generalization on unseen data.

•Saves Time and Resources: Reduces unnecessary training
time and computational resources by stopping training
when further improvements are unlikely.

•Improves Model Performance: Can lead to a more robust
and accurate model by selecting the best performing
model during training.

Early stopping

Configure (compile) the ANN - loss function

mean_squared_error = 1
𝑚
σ𝑖=1
𝑚 ො𝑦 𝑖 − 𝑦 𝑖 2

Train the ANN model

2400 ∙ 0.25 = 600 examples for validation
2400 − 600 = 1800examples for training

Early stopping is not used for now

Train the ANN model

Beginning of training

Train the ANN model
End of training

Analyze the learning progress

overfitting

Evaluate
the ANN
model

Target vs predicted for test set

Target vs
predicted
for test set

Target vs predicted for test set

ANN model with Dropout regularization

ANN model with Dropout regularization

ANN model with
Dropout
regularization

ANN model with
Dropout
regularization

No overfitting

ANN model with Early stopping regularization

ANN model with Early stopping regularization

No improvement in val_loss for 10 consecutive epochs

ANN model with Early stopping regularization

ANN model with Early stopping regularization

No improvement in val_loss
for 10 consecutive epochs

No regularization
Overfitting

Dropout regularization
No overfitting

Early stopping regularization
No overfitting

	Slide 1: Regression using ANN (function approximation)
	Slide 2: Content
	Slide 3: Dataset generation
	Slide 4: Dataset generation
	Slide 5: Dataset generation
	Slide 6: Dataset generation
	Slide 7: Dataset structure
	Slide 8: Data visualization
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Encoded Dataset
	Slide 23: Data set split
	Slide 24: Data set split
	Slide 25: Normalize dataset
	Slide 26: Standard Scaler
	Slide 27: ANN model Secvential
	Slide 28: ANN model summary and diagram
	Slide 29: ANN model summary and diagram
	Slide 30
	Slide 31
	Slide 32: Configure (compile) the ANN - loss function
	Slide 33: Train the ANN model
	Slide 34: Train the ANN model
	Slide 35: Train the ANN model
	Slide 36: Analyze the learning progress
	Slide 37: Evaluate the ANN model
	Slide 38: Target vs predicted for test set
	Slide 39: Target vs predicted for test set
	Slide 40: Target vs predicted for test set
	Slide 41: ANN model with Dropout regularization
	Slide 42: ANN model with Dropout regularization
	Slide 43: ANN model with Dropout regularization
	Slide 44: ANN model with Dropout regularization
	Slide 45: ANN model with Early stopping regularization
	Slide 46: ANN model with Early stopping regularization
	Slide 47: ANN model with Early stopping regularization
	Slide 48: ANN model with Early stopping regularization
	Slide 49

