# Regression using ANN (function approximation)

# **Case study**

using synthetic data (numerical and categorical features)

# Content

#### **1. Data Generation and Preprocessing:**

- Create synthetic data and standardizing it for training.
- Add categorical data and use one-hot encoder
- Understanding data data correlation
- 2. Building a Deep Neural Network:
  - How to design a regression-focused DNN using Keras.
- **3. Training the Model**:
  - Training with validation splits and visualizing training progress.
  - Use regularization (dropout) and Early stopping
- 4. Model Evaluation:
  - Calculating Mean Squared Error and understanding model performance.
- **5. Making Predictions:** 
  - Converting scaled predictions back to the original scale for interpretation.

# **Dataset generation**

#### **Dataset Description**

The dataset used is a synthetic dataset with the next characteristics:

#### 1. Numerical Features:

- The dataset contains *num\_samples* = 3000 examples with *num\_features* = 8 numerical features
- These features are generated randomly using np.random.rand, which creates values between 0 and 1, filling an array with the specified shape (num\_samples, num\_features).
- 3000 rows (samples) and 8 columns (features).
- This random data is then transformed in various non-linear ways using functions like sin, cos, exp, powers, and sums, to create complex relationships within the features and contribute to the target variable's value

#### 2. Categorical Features:

- Two categorical features (xcat\_1, xcat\_2) are added using np.random.choice.
- These are generated by randomly selecting values from the categories ['A', 'B', 'C'].

# **Dataset generation**

#### 3. Combining into a DataFrame:

•All these features (numerical and categorical) are combined into a pandas DataFrame called x for easier handling.

•The target variable (y) is also included in the final DataFrame called combined\_df.

#### 4. Target Variable (y):

•The target variable is calculated using a combination of these non-linear interactions between the numerical features.

•Gaussian noise (randomness) is then added to the target variable, controlled by noise\_level, to make the prediction task more challenging.

#### Shape and Format:

•The final dataset has 3000 samples (rows) and 10 features (columns): 8 numerical and 2 categorical.

•The target variable (y) is a separate array or Series with 3000 values.

#### Purpose:

•The dataset is designed to be "difficult" in the context of regression problems.

•The non-linear relationships and noise introduced in the target variable make it challenging for simple models to make accurate predictions. This is a common practice to evaluate the performance of more complex models like deep neural networks.

# Dataset generation

2

3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

```
def generate difficult dataset(n samples=10000, n features=20, noise level=0.5):
    .....
   Generates a difficult dataset for deep learning regression.
   Args:
       n_samples: Number of data points to generate.
       n features: Number of features.
       noise_level: Standard deviation of the Gaussian noise added to the target.
    Returns:
       X: Feature matrix (numpy array).
       y: Target variable (numpy array).
    .....
   # Generate random features
   X = np.random.rand(n_samples, n_features)
   # Create non-linear interactions between features
   y = (
       np.sin(X[:, 0] * X[:, 1]) + # Interaction between feature 0 and 1
       np.cos(X[:, 2] ** 2) +  # Non-linear transformation of feature 2
       X[:, 3] * X[:, 4] - # Interaction between feature 3 and 4
       X[:, 5] ** 3 + # Non-linear transformation of feature 5
       np.exp(X[:, 6]) + # Exponential transformation of feature 6
       np.sum(X[:, 7:10], axis=1) + # Sum of features 7, 8, and 9
       np.random.randn(n_samples) * noise_level # Add Gaussian noise
    return X, y
```

```
# Generate the numeric dataset
                    26
                        num samples = 3000
                    27
Dataset
                    28
                        num features = 8
                        X_numeric, y = generate_difficult_dataset(n_samples=num_samples,
                    29
generation
                    30
                                                                  n features=num features, noise level=0.25)
                        # Add synthetic categorical data
                    31
                    32
                        np.random.seed(42)
                        X_categorical = np.random.choice(['A', 'B', 'C'], size=(num_samples, 2))
                    33
                    34
                    35
                        # Combine numerical and categorical data into a DataFrame
                    36
                        X = pd.DataFrame(X_numeric, columns=[f"xnum_{i}" for i in range(8)])
                    37
                        X['xcat_1'] = X_categorical[:, 0]
                        X['xcat_2'] = X_categorical[:, 1]
                    38
                    39
                        y = y.reshape(-1, 1) # Reshape y to match expected input format
                    40
                   41
                    42
                        print("Shape of X (features):", X.shape)
                        print("Shape of y (target):", y.shape)
                    43
                   44
                    45
                        # Create a DataFrame for y
                        y_df = pd.DataFrame(y, columns=['target']) # Give y a column name
                    46
                    47
                        # Concatenate X and y_df horizontally
                        combined_df = pd.concat([X, y_df], axis=1)
                    48
                        # Print the combined DataFrame
                    49
                        print(combined_df.to_string())
                    50
```

#### **Dataset structure**

Shape of X (features): (3000, 10) Shape of y (target): (3000, 1)

|    | xnum_0   | xnum_1   | xnum_2   | xnum_3   | xnum_4   | xnum_5   | xnum_6   | xnum_7   | xcat_1 | xcat_2 | target            |
|----|----------|----------|----------|----------|----------|----------|----------|----------|--------|--------|-------------------|
| 0  | 0.125566 | 0.171295 | 0.827357 | 0.584839 | 0.337532 | 0.802851 | 0.246520 | 0.976033 | C      | А      | 2.678303          |
| 1  | 0.344818 | 0.337311 | 0.311912 | 0.122112 | 0.111137 | 0.648105 | 0.875118 | 0.790521 | C      | С      | 4.228160          |
| 2  | 0.141108 | 0.545582 | 0.105592 | 0.045295 | 0.656386 | 0.535152 | 0.082024 | 0.034939 | A      | А      | 2.250429          |
| 3  | 0.989756 | 0.030021 | 0.444528 | 0.504619 | 0.117280 | 0.169062 | 0.351805 | 0.761676 | С      | В      | 3. <b>0</b> 43173 |
| 4  | 0.507082 | 0.637902 | 0.985175 | 0.768005 | 0.434361 | 0.446442 | 0.618772 | 0.665365 | С      | С      | 4.083991          |
| 5  | 0.500711 | 0.644861 | 0.023532 | 0.429623 | 0.278938 | 0.129174 | 0.099547 | 0.603192 | С      | С      | 2.796914          |
| 6  | 0.523601 | 0.253584 | 0.470950 | 0.492232 | 0.195009 | 0.652093 | 0.780919 | 0.791464 | A      | С      | 3.814045          |
| 7  | 0.602470 | 0.511639 | 0.061007 | 0.287831 | 0.093271 | 0.963823 | 0.135080 | 0.151775 | В      | А      | 1.653826          |
| 8  | 0.889577 | 0.943928 | 0.765829 | 0.005405 | 0.001346 | 0.378101 | 0.143395 | 0.018386 | В      | В      | 2.615890          |
| 9  | 0.464067 | 0.943062 | 0.323820 | 0.661141 | 0.652235 | 0.251080 | 0.650425 | 0.212334 | В      | В      | 4.302319          |
| 10 | 0.122007 | 0.701383 | 0.113441 | 0.996909 | 0.183452 | 0.594142 | 0.411375 | 0.126386 | А      | А      | 2.697805          |

## **Data visualization**

Distribution of Target Variable



minimum: [1.00076199] maximum: [5.81300314] bin size: [0.16040804]



Data Index

# **Correlation matrix for numerical features**

```
2
    # Step 3: Calculate and visualize the correlation matrix for numerical features
    # Add the target variable to the DataFrame for correlation analysis
 3
    data = X.copy()
 4
 5
    data['target'] = y
 6
7
    # Select only numerical features for correlation analysis
8
    numerical_features = data.select_dtypes(include=np.number).columns
9
    # Calculate the correlation matrix for numerical features only
10
11
     correlation_matrix = data[numerical_features].corr()
12
13
    # Visualize the correlation matrix using a heatmap
14
     plt.figure(figsize=(10, 8))
15
     sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
16
     plt.title('Correlation Matrix')
     plt.show()
17
```



Understand how each feature is related to the target variable and other features.

The correlation matrix is a table that shows the correlation coefficients

- 0.4 between multiple variables.

Each cell in the table represents the correlation between two variables.

The correlation coefficient, typically denoted by "r", ranges from -1 to +1.

- -0.2

- 0.2

- 0.0

1.0

- 0.8

|          | Correlation Matrix |        |        |        |        |        |        |        |        |  |  |  |  |  |
|----------|--------------------|--------|--------|--------|--------|--------|--------|--------|--------|--|--|--|--|--|
| o_mux    | 1.00               | -0.02  | -0.02  | -0.02  | 0.02   | -0.00  | 0.01   | -0.01  | 0.17   |  |  |  |  |  |
| xnum_1   | -0.02              | 1.00   | -0.00  | -0.01  | -0.01  | 0.02   | 0.02   | -0.00  | 0.18   |  |  |  |  |  |
| xnum_2   | -0.02              | -0.00  | 1.00   | 0.01   | 0.04   | -0.01  | 0.02   | -0.02  | -0.14  |  |  |  |  |  |
| xnum_3   | -0.02              | -0.01  | 0.01   | 1.00   | -0.00  | 0.01   | 0.00   | 0.01   | 0.18   |  |  |  |  |  |
| xnum_4   | 0.02               | -0.01  | 0.04   | -0.00  | 1.00   | 0.00   | 0.02   | 0.03   | 0.22   |  |  |  |  |  |
| xnum_5   | -0.00              | 0.02   | -0.01  | 0.01   | 0.00   | 1.00   | 0.02   | -0.01  | -0.32  |  |  |  |  |  |
| - 9_ num | 0.01               | 0.02   | 0.02   | 0.00   | 0.02   | 0.02   | 1.00   | 0.01   | 0.64   |  |  |  |  |  |
| z_mum_7  | -0.01              | -0.00  | -0.02  | 0.01   | 0.03   | -0.01  | 0.01   | 1.00   | 0.40   |  |  |  |  |  |
| target   | 0.17               | 0.18   | -0.14  | 0.18   | 0.22   | -0.32  | 0.64   | 0.40   | 1.00   |  |  |  |  |  |
|          | xnum_0             | xnum_1 | xnum_2 | xnum_3 | xnum_4 | xnum_5 | xnum_6 | xnum_7 | target |  |  |  |  |  |

#### **Check for multicollinearity:**

**Positive Correlation (r > 0):** Indicates that as one variable increases, the other variable tends to increase as well. A value closer to +1 indicates a stronger positive correlation

important predictor  $\checkmark$ 

Negative Correlation (r < 0): Indicates that as one</p> variable increases, the other variable tends to decrease. A value closer to -1 indicates a stronger negative correlation

important predictor

**No Correlation (r \approx 0):** Indicates that there is **no linear** relationship between the two variables. Changes in one variable do not predictably affect the other

may be relevant, but their influence is less direct

If two features have a very high correlation with each other (e.g., above 0.8 or 0.9), it could indicate multicollinearity. This means they provide similar information, and one of them might be redundant in your model. - not the case here

- 0.6

- 0.4

- 0.2

- 0.0



#### **Convert categorical data into a numerical format**

Categorical data refers to variables that represent categories or labels rather than numerical values.

- "color" could have categories like "red""blue" and "green"
- or in general one could have categories like "A" "B" and "C"
- Machine learning algorithms, however, typically require numerical input to perform computations.
  - Converting categorical data into numerical form allows these algorithms to process and learn from the data.

|   | xcat_1 | xcat_2 | target   |
|---|--------|--------|----------|
| 0 | С      | Α      | 2.678303 |
| 1 | С      | С      | 4.228160 |
| 2 | А      | А      | 2.250429 |
| 3 | С      | В      | 3.043173 |
| 4 | С      | С      | 4.083991 |
| 5 | С      | С      | 2.796914 |
| 6 | А      | С      | 3.814045 |
| 7 | В      | А      | 1.653826 |
| 8 | В      | В      | 2.615890 |
| 9 | В      | В      | 4.302319 |

#### Convert categorical data into a numerical format using label encoder Label Encoding is a technique

Label Encoding is a technique used to convert categorical data (data that is represented by categories or labels) into numerical data.

This is often necessary because many machine learning algorithms work best with numerical input.

|   | xcat_1 xca | at_2 | target   |                        |   | xcat_1 | xcat_2 | target   |
|---|------------|------|----------|------------------------|---|--------|--------|----------|
| 0 | С          | Α    | 2.678303 |                        | 0 | 2      | 0      | 2.678303 |
| 1 | С          | С    | 4.228160 |                        | 1 | 2      | 2      | 4.228160 |
| 2 | А          | Α    | 2.250429 | $\wedge \rightarrow 0$ | 2 | 0      | 0      | 2.250429 |
| 3 | С          | В    | 3.043173 | $A \neq 0$             | 3 | 2      | 1      | 3.043173 |
| 4 | С          | С    | 4.083991 | B → I                  | 4 | 2      | 2      | 4.083991 |
| 5 | С          | С    | 2.796914 | $C \rightarrow 2$      | 5 | 2      | 2      | 2.796914 |
| 6 | А          | С    | 3.814045 |                        | 6 | 0      | 2      | 3.814045 |
| 7 | В          | Α    | 1.653826 |                        | 7 | 1      | 0      | 1.653826 |
| 8 | В          | В    | 2.615890 |                        | 8 | 1      | 1      | 2.615890 |
| 9 | В          | В    | 4.302319 |                        | 9 | 1      | 1      | 4.302319 |

#### How it works:

**1. Fit:** The Label Encoder analyzes the categorical feature (column) to identify all the unique categories or labels present. This is done using the fit method.

**2. Transform:** Once it has learned the categories, it assigns a unique numerical label to each category.

It starts from 0 and assigns consecutive integers to each distinct category. This is done using the transform method.

**3. Fit\_transform:** The fit\_transform method is a convenient combination. It performs both steps in a single call.

#### **Convert categorical data into a numerical format**

| using ladel encoder                               | xc | at_1 xc | at_2 | target   |   | xcat_1 | xcat_2 | target   |
|---------------------------------------------------|----|---------|------|----------|---|--------|--------|----------|
|                                                   | 0  | С       | Α    | 2.678303 | 0 | 2      | 0      | 2.678303 |
|                                                   | 1  | С       | С    | 4.228160 | 1 | 2      | 2      | 4.228160 |
|                                                   | 2  | Α       | Α    | 2.250429 | 2 | 0      | 0      | 2.250429 |
| <ul> <li>Simplicity: It's a simple and</li> </ul> | 3  | С       | В    | 3.043173 | 3 | 2      | 1      | 3.043173 |
| straightforward technique to apply.               | 4  | С       | С    | 4.083991 | 4 | 2      | 2      | 4.083991 |
|                                                   | 5  | С       | С    | 2.796914 | 5 | 2      | 2      | 2.796914 |
| Dreserves information: It preserves               | 6  | А       | С    | 3.814045 | 6 | 0      | 2      | 3.814045 |
| the order of categories if there is a             | 7  | В       | Α    | 1.653826 | 7 | 1      | 0      | 1.653826 |
| natural ordering                                  | 8  | В       | В    | 2.615890 | 8 | 1      | 1      | 2.615890 |
| natural ordening.                                 | 9  | В       | В    | 4.302319 | 9 | 1      | 1      | 4.302319 |

#### Limitations:

- **Ordinality assumption:** Label Encoding might introduce an ordinal relationship between categories where none exists.
  - For example, assigning 0 to A, 1 to B, 2 to C might imply that B is somehow between A and C which might not be true.
- Impact on models: This implied ordinality can mislead some algorithms, especially distance-based algorithms like KNN.

- For each unique category in a categorical feature, One-Hot Encoding creates a new binary feature (column).
- If a data point belongs to that category, the corresponding binary feature is set to 1; otherwise, it's set to 0.

|   | xcat_1 | xcat_2 | target   |   | xcat_1_A | xcat_1_B | xcat_1_C | xcat_2_A | xcat_2_B | xcat_2_C | target   |
|---|--------|--------|----------|---|----------|----------|----------|----------|----------|----------|----------|
| 9 | С      | Α      | 2.678303 | 0 | 0        | 0        | 1        | 1        | 0        | 0        | 2.678303 |
| 1 | С      | С      | 4.228160 | 1 | 0        | 0        | 1        | 0        | 0        | 1        | 4.228160 |
| 2 | А      | А      | 2.250429 | 2 | 1        | 0        | 0        | 1        | 0        | 0        | 2.250429 |
| 3 | С      | В      | 3.043173 | 3 | 0        | 0        | 1        | 0        | 1        | 0        | 3.043173 |
| 4 | С      | С      | 4.083991 | 4 | 0        | 0        | 1        | 0        | 0        | 1        | 4.083991 |
| 5 | С      | С      | 2.796914 | 5 | 0        | 0        | 1        | 0        | 0        | 1        | 2.796914 |
| 6 | А      | С      | 3.814045 | 6 | 1        | 0        | 0        | 0        | 0        | 1        | 3.814045 |
| 7 | В      | А      | 1.653826 | 7 | 0        | 1        | 0        | 1        | 0        | 0        | 1.653826 |
| 8 | В      | В      | 2.615890 | 8 | 0        | 1        | 0        | 0        | 1        | 0        | 2.615890 |
| 9 | В      | В      | 4.302319 | 9 | 0        | 1        | 0        | 0        | 1        | 0        | 4.302319 |

#### **Benefits of One-Hot Encoding:**

• Avoids ordinality: It doesn't introduce any ordinal relationship between categories.

• Suitable for most algorithms: Works well with a wide range of machine learning algorithms.

#### **Considerations:**

• Increased dimensionality: Can significantly increase the number of features, especially with high-cardinality categorical features (features with many unique categories). This can lead to increased computational cost and potential overfitting.

• Sparsity: The resulting data can be sparse (lots of zeros), which might require specialized data structures or algorithms.

#### **Collinearity issue**

Collinearity, or multicollinearity, occurs when two or more predictor variables (features) in a regression model are highly correlated with each other.

This can cause problems in the model, such as:

- Unstable coefficients: The estimated coefficients of the collinear variables can become unstable and vary significantly with small changes in the data.
- Reduced interpretability: It becomes difficult to interpret the individual effects of collinear variables on the target variable.
- Inflated standard errors: The standard errors of the coefficients can increase, making it harder to determine statistical significance.

#### Addressing Collinearity in One-Hot Encoded Data

One-Hot encoding can introduce perfect collinearity, also known as the "dummy variable trap."

This happens because the created dummy variables are perfectly linearly dependent.

If you have three categories (A, B, C) and you create three dummy variables (A, B, C), then knowing the values of two of the dummies automatically determines the value of the third.

To avoid this, you can **drop one of the dummy variables for each categorical feature**. This is called **dummy variable dropping** and is a common practice to address collinearity in One-Hot encoded data.

| 31   | <pre># Perform One-Hot Encoding without colinearity</pre> |
|------|-----------------------------------------------------------|
| 32 🗸 | onehot_df = pd.get_dummies(                               |
| 33   | <pre>subset_df, columns=['xcat_1', 'xcat_2'],</pre>       |
| 34   | drop_first=True,                                          |
| 35   | <pre>prefix=['xcat_1', 'xcat_2'],</pre>                   |
| 36   | dtype=int)                                                |

| xcat_1 x | cat_2                                                           | target                                                                              | 1                                                                                                                                                                                                    | xcat_1_B                                                                                                                                                                                                 | xcat_1_C                                                                                                                                                                                                                              | xcat_2_B                                                                                                                                                                                                                                                           | xcat_2_C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | target                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| С        | Α                                                               | 2.678303                                                                            | 0                                                                                                                                                                                                    | 0                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.678303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| С        | С                                                               | 4.228160                                                                            | 1                                                                                                                                                                                                    | 0                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.228160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Α        | Α                                                               | 2.250429                                                                            | 2                                                                                                                                                                                                    | 0                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.250429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| С        | В                                                               | 3.043173                                                                            | 3                                                                                                                                                                                                    | 0                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.043173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| С        | С                                                               | 4.083991                                                                            | 4                                                                                                                                                                                                    | 0                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.083991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| С        | С                                                               | 2.796914                                                                            | 5                                                                                                                                                                                                    | 0                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.796914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| А        | С                                                               | 3.814045                                                                            | 6                                                                                                                                                                                                    | 0                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.814045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| В        | Α                                                               | 1.653826                                                                            | 7                                                                                                                                                                                                    | 1                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.653826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| В        | В                                                               | 2.615890                                                                            | 8                                                                                                                                                                                                    | 1                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.615890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| В        | В                                                               | 4.302319                                                                            | 9                                                                                                                                                                                                    | 1                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.302319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | xcat_1 x<br>C<br>C<br>A<br>C<br>C<br>C<br>A<br>B<br>B<br>B<br>B | xcat_1 xcat_2<br>C A<br>C C<br>A A<br>C B<br>C C<br>C C<br>A C<br>B A<br>B B<br>B B | xcat_1 xcat_2 target<br>C A 2.678303<br>C C 4.228160<br>A A 2.250429<br>C B 3.043173<br>C C 4.083991<br>C C 4.083991<br>C C 2.796914<br>A C 3.814045<br>B A 1.653826<br>B B 2.615890<br>B B 4.302319 | xcat_1 xcat_2 target<br>C A 2.678303 0<br>C C 4.228160 1<br>A A 2.250429 2<br>C B 3.043173 3<br>C C 4.083991 4<br>C C 2.796914 5<br>A C 3.814045 6<br>B A 1.653826 7<br>B B 2.615890 8<br>B B 4.302319 9 | xcat_1 xcat_2 target xcat_1_B<br>C A 2.678303 0 0<br>C C 4.228160 1 0<br>A A 2.250429 2 0<br>C B 3.043173 3 0<br>C C 4.083991 4 0<br>C C 2.796914 5 0<br>A C 3.814045 6 0<br>B A 1.653826 7 1<br>B B 2.615890 8 1<br>B B 4.302319 9 1 | xcat_1 xcat_2 target xcat_1_B xcat_1_C<br>C A 2.678303 0 0 1<br>C C 4.228160 1 0 1<br>A A 2.250429 2 0 0<br>C B 3.043173 3 0 1<br>C C 4.083991 4 0 1<br>C C 2.796914 5 0 1<br>A C 3.814045 6 0 0<br>B A 1.653826 7 1 0<br>B B 2.615890 8 1 0<br>B B 4.302319 9 1 0 | xcat_1 xcat_2 target       xcat_1_B xcat_1_C xcat_2_B         C       A 2.678303       0       0       1       0         C       C       4.228160       1       0       1       0         A       A 2.250429       2       0       0       0       0         C       B 3.043173       3       0       1       1       0         C       C       4.083991       4       0       1       0         C       C       2.796914       5       0       1       0         A       C       3.814045       6       0       0       0         B       A 1.653826       7       1       0       0       1         B       B 4.302319       9       1       0       1       1 | xcat_1 xcat_2 target       xcat_1_B xcat_1_C xcat_2_B xcat_2_C         C       A 2.678303       0       0       1       0       0         C       C       4.228160       1       0       1       0       1         A       A 2.250429       2       0       0       0       0       0         C       B 3.043173       3       0       1       1       0       0         C       C       4.083991       4       0       1       0       1         C       C       2.796914       5       0       1       0       1         A       C       3.814045       6       0       0       0       1         B       A 1.653826       7       1       0       0       0       0         B       B 4.302319       9       1       0       1       0       0 |

#### **Encoded Dataset**

Shape of X (features): (3000, 12) Shape of y (target): (3000, 1)

|    | xnum_0   | xnum_1   | xnum_2   | xnum_3   | xnum_4   | xnum_5   | xnum_6   | xnum_7   | xcat_1_B | xcat_1_C | xcat_2_B | xcat_2_C | target   |
|----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0  | 0.125566 | 0.171295 | 0.827357 | 0.584839 | 0.337532 | 0.802851 | 0.246520 | 0.976033 | 0        | 1        | 0        | 0        | 2.678303 |
| 1  | 0.344818 | 0.337311 | 0.311912 | 0.122112 | 0.111137 | 0.648105 | 0.875118 | 0.790521 | 0        | 1        | 0        | 1        | 4.228160 |
| 2  | 0.141108 | 0.545582 | 0.105592 | 0.045295 | 0.656386 | 0.535152 | 0.082024 | 0.034939 | 0        | 0        | 0        | 0        | 2.250429 |
| 3  | 0.989756 | 0.030021 | 0.444528 | 0.504619 | 0.117280 | 0.169062 | 0.351805 | 0.761676 | 0        | 1        | 1        | 0        | 3.043173 |
| 4  | 0.507082 | 0.637902 | 0.985175 | 0.768005 | 0.434361 | 0.446442 | 0.618772 | 0.665365 | 0        | 1        | 0        | 1        | 4.083991 |
| 5  | 0.500711 | 0.644861 | 0.023532 | 0.429623 | 0.278938 | 0.129174 | 0.099547 | 0.603192 | 0        | 1        | 0        | 1        | 2.796914 |
| 6  | 0.523601 | 0.253584 | 0.470950 | 0.492232 | 0.195009 | 0.652093 | 0.780919 | 0.791464 | 0        | 0        | 0        | 1        | 3.814045 |
| 7  | 0.602470 | 0.511639 | 0.061007 | 0.287831 | 0.093271 | 0.963823 | 0.135080 | 0.151775 | 1        | 0        | 0        | 0        | 1.653826 |
| 8  | 0.889577 | 0.943928 | 0.765829 | 0.005405 | 0.001346 | 0.378101 | 0.143395 | 0.018386 | 1        | 0        | 1        | 0        | 2.615890 |
| 9  | 0.464067 | 0.943062 | 0.323820 | 0.661141 | 0.652235 | 0.251080 | 0.650425 | 0.212334 | 1        | 0        | 1        | 0        | 4.302319 |
| 10 | 0.122007 | 0.701383 | 0.113441 | 0.996909 | 0.183452 | 0.594142 | 0.411375 | 0.126386 | 0        | 0        | 0        | 0        | 2.697805 |

# Data set split



Train set: used to learn the parameters of the model

Val set (validation set): supervises the learning generality (identify overfitting);

Test set: used as a proxy for unseen data and evaluate our model on test-set (brand-new data set)

Now we will **split** the full data set in 2 subsets:

- **test\_set 20%** of the entire data set (**600** examples)
- train\_set 80% of the entire data set
  - Later on, when we will use .fit method to train our ANN model; from the train\_set
    - 22.22% (**30** examples) will be used for **validation**
    - 77.78% (**105** examples) for real model **trainig**

# Data set split

- 2 # Step 5: Split data into training and test sets
- 3 from sklearn.model\_selection import train\_test\_split # Import the train\_test\_split function
- 4 X\_train, X\_test, y\_train, y\_test = train\_test\_split(X\_encoded, y, test\_size=0.2, random\_state=42)

Shape of X\_train: (2400, 12) Shape of X\_test: (600, 12) Shape of y\_train: (2400, 1) Shape of y\_test: (600, 1)

#### Normalize dataset

Both sets Train set

• Numerical features

Targets

Test set • Encoded features are not normalized

```
# Step 6: Standardize the numerical data
 2
    from sklearn.preprocessing import StandardScaler # Import the StandardScaler class
 3
 4
    scaler X = StandardScaler()
 5
    scaler_y = StandardScaler()
 6
 7
    # Standardize only numerical columns for train set
 8
    X_train.iloc[:, :8] = scaler_X.fit_transform(X_train.iloc[:, :8])
 9
    # Standardize only numerical columns for test set
10
    X test.iloc[:, :8] = scaler X.transform(X test.iloc[:, :8])
11
12
    y_train = scaler_y.fit_transform(y_train) # Standardize target for train test
13
    y_test = scaler_y.transform(y_test) # Standardize target for test test  🔨 🛛
14
15
    # In pandas DataFrames, iloc is primarily used for integer-location based indexing.
16
    # It allows to select rows and columns from a DataFrame using their numerical positions (indices)
17
```



- Centering: The mean of the feature is subtracted from each feature value (x). This shifts the distribution of the feature so that its mean becomes 0.
- **2. Scaling:** Each centered feature value is then divided by the standard deviation. This scales the distribution so that its variance becomes 1.

#### ANN model Secvential

- 2 # Step 7: Build the deep neural network model no Dropout here
- 3 import tensorflow

5

7

8

9

10

11

12

13

14

15

16

17

18

19

4 from tensorflow import keras

```
6 model = keras.Sequential([
```

```
keras.layers.Input(shape=(X_train.shape[1],), name="Input"),
keras.layers.Dense(units=64, activation='relu', name="hidden_layer_1"),
# keras.layers.Dropout(rate =0.1, name = "dropout_1"),
    # Drop 10% of the neurons in this layer during training
keras.layers.Dense(units=128, activation='relu', name="hidden_layer_2"),
# keras.layers.Dropout(rate =0.1, name = "dropout_2"),
    # Drop 10% of the neurons in this layer during training
keras.layers.Dense(64,'relu', name="hidden_layer_3"),
# keras.layers.Dropout(0.2, name = "dropout_3"),
    # Drop 20% of the neurons in this layer during training
keras.layers.Dense(1, activation=None, name = 'output')
     # Output layer for regression (1 node, no activation function)
```

], name = "Regression\_ANN")

# **ANN model summary and diagram**

```
21 model.summary()
22 keras.utils.plot_model(model, to_file='model_diagram.png',
23 show_shapes=True, show_layer_names=True,
24 dpi=64, rankdir='TB') # Adjust dpi and rankdir
```

| Model: | "Regression | _ann" |
|--------|-------------|-------|
|--------|-------------|-------|

| Layer (type)           | Output Shape | Param # |
|------------------------|--------------|---------|
| hidden_layer_1 (Dense) | (None, 64)   | 832     |
| hidden_layer_2 (Dense) | (None, 128)  | 8,320   |
| hidden_layer_3 (Dense) | (None, 64)   | 8,256   |
| output (Dense)         | (None, 1)    | 65      |

Total params: 17,473 (68.25 KB) Trainable params: 17,473 (68.25 KB) Non-trainable params: 0 (0.00 B)

#### **ANN model summary and diagram**



# **Early stopping**

A regularization technique used in deep learning to prevent overfitting. Overfitting occurs when a model learns the training data too well, including its noise and random fluctuations, resulting in poor performance on unseen data.

#### How it Works:

**1. Validation Set:** A portion of the training data is set aside as a validation set. This set is not used to train the model directly.

**2. Monitoring:** During training, the model's performance (e.g., loss or accuracy) is evaluated on both the training set and the validation set.

**3. Stopping Criteria:** If the model's performance on the validation set starts to worsen (e.g., validation loss increases or validation accuracy decreases) while the performance on the training set continues to improve, it indicates that the model is starting to overfit.

**4. Early Stop:** Training is stopped before the model has a chance to fully overfit the training data. The model parameters from the epoch with the best performance on the validation set are saved and used as the final model.

#### **Benefits of Early Stopping:**

•Prevents Overfitting: Stops training before the model overfits, leading to better generalization on unseen data.

•Saves Time and Resources: Reduces unnecessary training time and computational resources by stopping training when further improvements are unlikely.

•Improves Model Performance: Can lead to a more robust and accurate model by selecting the best performing model during training.

```
to a more robust
best performing
```

Acost

early Mopping

val

Corp

2 # Step 8: Introduce Early Stopping

```
3 import tensorflow
```

```
4 from tensorflow import keras
```

```
5
```

```
6 early_stopping = keras.callbacks.EarlyStopping(
7 monitor='val_loss', # Monitor validation loss
8 patience=10, # Stop if no improvement for 10 epochs
9 restore_best_weights=True # Restore weights from the best epoch
10 )
```

**Early stopping** 

# **Configure (compile) the ANN - loss function**

- 1 # Configure (compile) the model
- 2 import tensorflow
- 3 from tensorflow import keras
- 4

6

5 vmodel.compile(optimizer=keras.optimizers.Adam(learning\_rate=0.0002),

loss=keras.losses.MeanSquaredError(),

metrics=['mean\_squared\_error'])

mean\_squared\_error = 
$$\frac{1}{m}\sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^2$$

## **Train the ANN model**

```
# Step 9: Train the model
 2
     history = model.fit(
 3
4
         X train, y train,
 5
         validation_split=0.25, # used as data validation set
 6
         epochs=500,
         batch size=1024,
 7
         # callbacks=[early_stopping], # Use EarlyStopping callback
8
9
         verbose=1
10
```

Early stopping is not used for now

 $2400 \cdot 0.25 = 600$  examples for validation 2400 - 600 = 1800 examples for training

# **Train the ANN model**

#### Beginning of training

| 3s 266ms/step       | - loss:                                                                                                | 0.9804                                                                                                                                                           | - mean_squared_error                                                                                                                                                                | : 0.9804 - val_loss                                                                                                                                                                                                                                                                                                                        | 1.0506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>val_mean_squared_error: 1.0506</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     |                                                                                                        |                                                                                                                                                                  |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>0s</b> 35ms/step | - loss: 0                                                                                              | 0.9509                                                                                                                                                           | <pre>mean_squared_error:</pre>                                                                                                                                                      | 0.9509 - val_loss:                                                                                                                                                                                                                                                                                                                         | 1.0148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>val_mean_squared_error: 1.0148</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     |                                                                                                        |                                                                                                                                                                  |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>0s</b> 34ms/step | - loss: 0                                                                                              | 0.9113 ·                                                                                                                                                         | <pre>mean_squared_error:</pre>                                                                                                                                                      | 0.9113 - val_loss:                                                                                                                                                                                                                                                                                                                         | 0.9799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>val_mean_squared_error: 0.9799</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     |                                                                                                        |                                                                                                                                                                  |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>0s</b> 36ms/step | - loss: 0                                                                                              | 0.8678                                                                                                                                                           | <pre>mean_squared_error:</pre>                                                                                                                                                      | 0.8678 - val_loss:                                                                                                                                                                                                                                                                                                                         | 0.9462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>val_mean_squared_error: 0.9462</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     |                                                                                                        |                                                                                                                                                                  |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>0s</b> 36ms/step | - loss: 0                                                                                              | 0.8449                                                                                                                                                           | <pre>mean_squared_error:</pre>                                                                                                                                                      | 0.8449 - val_loss:                                                                                                                                                                                                                                                                                                                         | 0.9136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>val_mean_squared_error: 0.9136</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     |                                                                                                        |                                                                                                                                                                  |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>0s</b> 34ms/step | - loss: 0                                                                                              | 9.8248                                                                                                                                                           | <pre>mean_squared_error:</pre>                                                                                                                                                      | 0.8248 - val_loss:                                                                                                                                                                                                                                                                                                                         | 0.8819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>val_mean_squared_error: 0.8819</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     |                                                                                                        |                                                                                                                                                                  |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>0s</b> 35ms/step | - loss: 0                                                                                              | 0.7687                                                                                                                                                           | <pre>mean_squared_error:</pre>                                                                                                                                                      | 0.7687 - val_loss:                                                                                                                                                                                                                                                                                                                         | 0.8511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>val_mean_squared_error: 0.8511</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     | <pre>3s 266ms/step 0s 35ms/step 0s 34ms/step 0s 36ms/step 0s 36ms/step 0s 34ms/step 0s 35ms/step</pre> | <pre>3s 266ms/step - loss: 0s 35ms/step - loss: 0s 34ms/step - loss: 0s 36ms/step - loss: 0s 36ms/step - loss: 0s 34ms/step - loss: 0s 35ms/step - loss: 0</pre> | <pre>3s 266ms/step - loss: 0.9804 0s 35ms/step - loss: 0.9509 0s 34ms/step - loss: 0.9113 0s 36ms/step - loss: 0.8678 0s 36ms/step - loss: 0.8449 0s 34ms/step - loss: 0.8248</pre> | <pre>3s 266ms/step - loss: 0.9804 - mean_squared_error<br/>0s 35ms/step - loss: 0.9509 · mean_squared_error:<br/>0s 34ms/step - loss: 0.9113 · mean_squared_error:<br/>0s 36ms/step - loss: 0.8678 · mean_squared_error:<br/>0s 34ms/step - loss: 0.8449 · mean_squared_error:<br/>0s 35ms/step - loss: 0.8248 · mean_squared_error:</pre> | <pre>3s 266ms/step - loss: 0.9804 - mean_squared_error: 0.9804 - val_loss<br/>0s 35ms/step - loss: 0.9509 · mean_squared_error: 0.9509 - val_loss:<br/>0s 34ms/step - loss: 0.9113 · mean_squared_error: 0.9113 - val_loss:<br/>0s 36ms/step - loss: 0.8678 · mean_squared_error: 0.8678 - val_loss:<br/>0s 34ms/step - loss: 0.8449 · mean_squared_error: 0.8449 - val_loss:<br/>0s 34ms/step - loss: 0.8248 · mean_squared_error: 0.8248 - val_loss:<br/>0s 35ms/step - loss: 0.7687 · mean_squared_error: 0.7687 - val_loss:</pre> | 3s       266ms/step - loss:       0.9804       - mean_squared_error:       0.9804 - val_loss:       1.0506         0s       35ms/step - loss:       0.9509       mean_squared_error:       0.9509 - val_loss:       1.0148         0s       34ms/step - loss:       0.9113       mean_squared_error:       0.9113 - val_loss:       0.9799         0s       36ms/step - loss:       0.8678       mean_squared_error:       0.8678 - val_loss:       0.9462         0s       36ms/step - loss:       0.8449       mean_squared_error:       0.8678 - val_loss:       0.9136         0s       36ms/step - loss:       0.8248       mean_squared_error:       0.8449 - val_loss:       0.9136         0s       34ms/step - loss:       0.8248       mean_squared_error:       0.8248 - val_loss:       0.8819         0s       35ms/step - loss:       0.7687       mean_squared_error:       0.7687 - val_loss:       0.8511 |

#### **Train the ANN model**

#### End of training

| Epoch 491/500 |                               |              |                  |                    |           |                                      |           |
|---------------|-------------------------------|--------------|------------------|--------------------|-----------|--------------------------------------|-----------|
| 2/2           | • <b>0s</b> 39ms/step - loss: | 0.0435 - mea | n_squared_error: | 0.0435 - val_loss: | 0.1398    | <pre>- val_mean_squared_error:</pre> | 0.1398    |
| Epoch 492/500 |                               |              |                  |                    |           |                                      |           |
| 2/2           | • <b>0s</b> 42ms/step - loss: | 0.0442 - mea | n_squared_error: | 0.0442 - val_loss: | 0.1399    | <pre>- val_mean_squared_error:</pre> | 0.1399    |
| Epoch 493/500 |                               |              |                  |                    |           |                                      |           |
| 2/2           | • <b>0s</b> 42ms/step - loss: | 0.0442 - mea | n_squared_error: | 0.0442 - val_loss: | 0.1403    | <pre>- val_mean_squared_error:</pre> | 0.1403    |
| Epoch 494/500 | <b>.</b>                      |              |                  |                    |           |                                      |           |
| 2/2           | • <b>0s</b> 44ms/step - loss: | 0.0424 - mea | n_squared_error: | 0.0424 - val_loss: | 0.1401    | <pre>- val_mean_squared_error:</pre> | 0.1401    |
| Epoch 495/500 | 0. 10                         | 0.0407       |                  | 0.0407             | 0 1 4 0 1 |                                      | 0 1 4 0 1 |
| 2/2           | • <b>0s</b> 43ms/step - loss: | 0.0437 - mea | n_squared_error: | 0.043/ - Val_loss: | 0.1401    | - vai_mean_squared_error:            | 0.1401    |
| 2/2           | Ac E7ms/stop - loss:          | 0 0424 - moo | n cauanad annan. | 0 0424 - vol locat | 0 1404    | val mean equaned enner.              | 0 1/0/    |
| 2/2           | • <b>05</b> 5/ms/step - 1055. | 0.0424 - mea | n_squared_error. | 0.0424 - Val_1055. | 0.1404    | - val_mean_squared_error.            | 0.1404    |
| 2/2           | . As 40ms/step - loss.        | 0 0434 - mea | n squared error: | 0 0434 - val loss: | a 14a9    | - val mean squared error:            | a 1409    |
| Epoch 498/500 | 03 40m3/300p 1033.            | 0.0494 11120 |                  | 0.0454 Vai_1035.   | 0.1405    | var_mean_squarea_error.              | 0.1405    |
| 2/2           | • <b>0s</b> 49ms/step - loss: | 0.0434 - mea | n squared error: | 0.0434 - val loss: | 0.1405    | - val mean squared error:            | 0.1405    |
| Epoch 499/500 |                               |              |                  |                    |           |                                      |           |
| 2/2           | • <b>0s</b> 41ms/step - loss: | 0.0426 - mea | n squared error: | 0.0426 - val loss: | 0.1406    | - val mean squared error:            | 0.1406    |
| Epoch 500/500 | •                             |              | _ · _            | -                  |           |                                      |           |
| 2/2           | • <b>0s</b> 42ms/step - loss: | 0.0423 - mea | n_squared_error: | 0.0423 - val_loss: | 0.1408    | <pre>- val_mean_squared_error:</pre> | 0.1408    |
|               |                               |              |                  |                    |           |                                      |           |

#### **Analyze the learning progress**



Model Loss During Training

# **Evaluate** the ANN model

Metric

R-squared

MSE

```
from sklearn.metrics import r2_score, mean_squared_error
                                     1
                                     2
                                     З
                                         def display scores(model, X train, X test, y train, y test, scaler y):
                                             .....
                                     4
                                             Calculates and displays MSE and R-squared scores for train and test sets.
                                     5
                                     6
                                             Args:
                                     7
                                                 model: The trained Keras model.
                                                 X train: Training data features; X test: Test data features.
                                     8
                                     9
                                                 y train: Training data target; y test: Test data target.
                                    10
                                                 scaler_y: The StandardScaler object used for target variable scaling.
                                   11
                                             .....
                                   12
                                             # Get predictions for train and test sets
                                             y train pred = model.predict(X train)
                                   13
                                             y test pred = model.predict(X test)
                                   14
                                   15
                                             # Inverse transform to get actual values
                                   16
                                             y train actual = scaler y.inverse transform(y train)
                                   17
                                             y test actual = scaler y.inverse transform(y test)
                                             y train pred actual = scaler y.inverse transform(y train pred)
                                   18
                                            y test pred actual = scaler_y.inverse_transform(y_test_pred)
                                   19
                                             # Calculate MSE and R-squared
                                    20
                                   21
                                             train_mse = mean_squared_error(y train_actual, y_train_pred_actual)
                                   22
                                             test mse = mean squared error(y test actual, y test pred actual)
                                             train r^2 = r^2 score(y train actual, y train pred actual)
                                    23
Model Evaluation Metrics:
                                             test r^2 = r^2 score(y test actual, y test pred actual)
                                   24
                                   25
                                             # Display the scores in a formatted table
                                             print("-" * 30)
                                   26
               Train
                          Test
                                   27
                                             print("Model Evaluation Metrics:")
                                             print("-" * 30)
                                    28
                                   29
                                             print(f"{'Metric':<15} {'Train':<10} {'Test':<10}")</pre>
               0.0382
                         0.0811
                                    30
                                             print("-" * 30)
                                             print(f"{'MSE':<15} {train_mse:<10.4f} {test_mse:<10.4f}")</pre>
                                   31
               0.9329
                         0.8679
                                             print(f"{'R-squared':<15} {train r2:<10.4f} {test r2:<10.4f}")
                                   32
                                   33
                                             print("-" * 30)
                                   34
```

display\_scores(model, X\_train, X\_test, y\_train, y\_test, scaler\_y) 35

# **Target vs predicted for test set**

```
# Step 12: Make predictions
 2
   y_pred = model.predict(X_test)
 3
 4
 5
    # Convert predictions back to the original scale
    y_pred_original = scaler_y.inverse_transform(y_pred)</pred)
 6
    y_test_original = scaler_y.inverse_transform(y_test)
 7
 8
 9
    # Plot actual vs predicted values
    plt.figure(figsize=(10, 5))
10
    plt.scatter(y_test_original, y_pred_original, alpha=0.7)
11
    plt.title('Actual vs Predicted')
12
13
    plt.xlabel('Actual Values')
14
    plt.ylabel('Predicted Values')
15
     plt.plot([min(y_test_original), max(y_test_original)],
16
              [min(y_test_original), max(y_test_original)],
              color='red', linewidth=2) # Reference line
17
    plt.show()
18
```

# Target vs predicted for test set



# **Target vs predicted for test set**



Target vs. Predicted (First 25 Examples)

### **ANN model with Dropout regularization**

- 2 # Step 7: Build the deep neural network model with Dropout
- 3 import tensorflow
- 4 from tensorflow import keras

```
6 model = keras.Sequential([
```

keras.layers.Input(shape=(X\_train.shape[1],), name="Input"),
keras.layers.Dense(units=64, activation='relu', name="hidden\_layer\_1"),
keras.layers.Dropout(rate =0.1, name = "dropout\_1"),

# Drop 10% of the neurons in this layer during training keras.layers.Dense(units=128, activation='relu', name="hidden\_layer\_2"), keras.layers.Dropout(rate =0.1, name = "dropout\_2"),

# Drop 10% of the neurons in this layer during training keras.layers.Dense(64,'relu', name="hidden\_layer\_3"), keras.layers.Dropout(0.2, name = "dropout\_3"),

# Drop 20% of the neurons in this layer during training keras.layers.Dense(1, activation=None, name = 'output')

# Output layer for regression (1 node, no activation function)
], name = "Regression\_ANN")

## **ANN model with Dropout regularization**

Model: "Regression\_ANN"

| Layer (type)           | Output Shape | Param # |
|------------------------|--------------|---------|
| hidden_layer_1 (Dense) | (None, 64)   | 832     |
| dropout_1 (Dropout)    | (None, 64)   | 0       |
| hidden_layer_2 (Dense) | (None, 128)  | 8,320   |
| dropout_2 (Dropout)    | (None, 128)  | 0       |
| hidden_layer_3 (Dense) | (None, 64)   | 8,256   |
| dropout_3 (Dropout)    | (None, 64)   | 0       |
| output (Dense)         | (None, 1)    | 65      |

Total params: 17,473 (68.25 KB) Trainable params: 17,473 (68.25 KB) Non-trainable params: 0 (0.00 B)

# ANN model with Dropout regularization



Model Loss During Training



```
# Step 8: Introduce Early Stopping
2
 3
    import tensorflow
    from tensorflow import keras
4
5
    early stopping = keras.callbacks.EarlyStopping(
6
        monitor='val_loss', # Monitor validation loss
7
       patience=10,
8
                            # Stop if no improvement for 10 epochs
9
        restore best weights=True # Restore weights from the best epoch
10
11
```

```
1
2
    # Step 9: Train the model
3
    history = model.fit(
4
        X train, y train,
5
        validation split=0.25, # used as data validation set
        epochs=500,
6
7
        batch size=1024,
        callbacks=[early stopping] # Use EarlyStopping callback
8
        verbose=1
9
10
```

| Epoch 216/500 |                                                                                                                       |
|---------------|-----------------------------------------------------------------------------------------------------------------------|
| 2/2           | - Os 45ms/step - loss: 0.0870 - mean_squared_error: 0.0870 - val_loss: 0.1317 - val_mean_squared_error: 0.1317        |
| Epoch 217/500 |                                                                                                                       |
| 2/2           | - Os 45ms/step - loss: 0.0846 - mean_squared_error: 0.0846 - val_loss: 0.1318 - val_mean_squared_error: 0.1318        |
| 2/2           | - As Remarksten - loss: 0.0867 - mean squared error: 0.0867 - val loss: 0.1210 - val mean squared error: 0.1210       |
| Epoch 219/500 |                                                                                                                       |
| 2/2           | - 0s 36ms/step - loss: 0.0857 - mean squared error: 0.0857 - val loss: 0.1320 - val mean squared error: 0.1320        |
| Epoch 220/500 |                                                                                                                       |
| 2/2           | - Os 37ms/step - loss: 0.0858 - mean_squared_error: 0.0858 - val_loss: 0.1319 - val_mean_squared_error: 0.1319        |
| Epoch 221/500 |                                                                                                                       |
| 2/2           | - <b>0s</b> 36ms/step - loss: 0.0837 - mean_squared_error: 0.0837 - val_loss: 0.1319 - val_mean_squared_error: 0.1319 |
| Epoch 222/500 | - As 27ms/stop loss: A AP56 moon squared error; A AP56 val loss; A 1210 val moon squared error; A 1210                |
| Enoch 223/500 | - <b>05</b> Symsystep - 10ss. 0.0850 - mean_squared_error. 0.0850 - Var_10ss. 0.1519 - Var_mean_squared_error. 0.1519 |
| 2/2           | - 0s 39ms/step - loss: 0.0839 - mean squared error: 0.0839 - val loss: 0.1321 - val mean squared error: 0.1321        |
| Epoch 224/500 |                                                                                                                       |
| 2/2           | - 0s 36ms/step - loss: 0.0851 - mean_squared_error: 0.0851 - val_loss: 0.1321 - val_mean_squared_error: 0.1321        |
| Epoch 225/500 |                                                                                                                       |
| 2/2           | - <b>0s</b> 40ms/step - loss: 0.0844 - mean_squared_error: 0.0844 - val_loss: 0.1320 - val_mean_squared_error: 0.1320 |
| Epoch 226/500 |                                                                                                                       |
| 2/2           | - 0s 42ms/step - 1oss: 0.0843 - mean_squared_error: 0.0843 - val_loss: 0.1319 - val_mean_squared_error: 0.1319        |

No improvement in val\_loss for 10 consecutive epochs

Model Loss During Training





