
RNN

Recurrent Neural Network

Artificial neural network that are able to recognize and

predict sequences of data such as text, genomes,
handwriting, spoken word, or numerical time series data.

They have loops that allow a consistent flow of
information and can work on sequences of arbitrary
lengths.

Make use of internal state (memory) to process a
sequence of inputs.

https://heartbeat.fritz.ai/a-beginners-guide-to-implementing-long-
short-term-memory-networks-lstm-eb7a2ff09a27

https://heartbeat.fritz.ai/a-beginners-guide-to-implementing-long-short-term-memory-networks-lstm-eb7a2ff09a27
https://heartbeat.fritz.ai/a-beginners-guide-to-implementing-long-short-term-memory-networks-lstm-eb7a2ff09a27

RNNs are used to solve several problems:

• Language translation and modeling

• Speech recognition

• Image captioning

• Time series data such as stock prices (tell when to buy or sell)

• Automatic (autonomous?) driving systems to anticipate car
trajectories; help avoid accidents.

https://heartbeat.fritz.ai/a-beginners-guide-to-implementing-long-
short-term-memory-networks-lstm-eb7a2ff09a27

RNN utilization
Processing sequential data, where the order of elements matters
(e.g., time series, text, language).

https://heartbeat.fritz.ai/a-beginners-guide-to-implementing-long-short-term-memory-networks-lstm-eb7a2ff09a27
https://heartbeat.fritz.ai/a-beginners-guide-to-implementing-long-short-term-memory-networks-lstm-eb7a2ff09a27

RNN structure

https://adventuresinmachinelearning.com/recurrent-neural-networks-
lstm-tutorial-tensorflow/

The output of the
hidden layer is fed
back into the same
hidden layer

We can model time or
sequence-dependent
data (time series)

The weights of the connections between time steps are shared i.e.
there isn’t a different set of weights for each time step.

𝑎1
𝑡 𝑎2

𝑡 𝑎3
𝑡

𝑎𝑡−1

t – time moment

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/
https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

at

xt

delay
F

at-1

U
V

RNN structure

𝑎𝑡 = 𝐹 𝑈 𝑥𝑡 + 𝑉 𝑎𝑡−1

cu
rr

en
t

o
u

tp
u

t
(a

ct
iv

at
io

n
)

ac
ti

va
ti

o
n

 f
u

n
ct

io
n

w
ei

gh
t

m
at

ri
x

fo
r

in
p

u
t

cu
rr

en
t

in
p

u
t

w
ei

gh
t

m
at

ri
x

fo
r

re
cu

rr
en

t
o

u
tp

u
t

re
cu

rr
en

t
o

u
tp

u
t

Example“A girl walked into a bar, and she said: ‘Can I have a drink please?’.

The bartender said ‘Certainly {?}”

{?} can be “miss”, “ma’am”, …

“sir”, “Mister”, … also could fit

To get the correct gender of the noun, the neural network needs to recall that
two previous words designating the likely gender (i.e., “girl” and “she”) were used.

Unrolled RNNRNN

Serial-to- parallel conversion of data sequence to
supply a stream of data to the RNN

https://adventuresinmachinelearning.com/recurrent-neural-
networks-lstm-tutorial-tensorflow/

𝑎𝑡 𝑎0 𝑎1 𝑎2 𝑎𝑡

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/
https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

many-to-one model

inputs: “A girl walked into a bar…”
outputs (predicted): h0 to ht.

many-to-many model

one-to-many model

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

𝑎𝑡 𝑎0 𝑎1 𝑎2 𝑎𝑡

𝑎𝑡

𝑎0 𝑎1 𝑎2 𝑎𝑡

input-to-activation model

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

Basic RNN - critical analyses

For RNN, ideally, we would want to have long memories (many
time steps), so the network can connect data relationships at
significant distances in time.
An RNN with long memory could make real progress in
understanding how language and narrative work, how stock
market events are correlated, etc.

The more time steps we have, the more chance we have of
back-propagation error gradients:

• accumulating and exploding (for values > 1)
• vanishing down to nothing (for values < 1)

RNNs present a major setback
o vanishing gradient / exploding gradient

They have difficulties in learning long-range dependencies
(relationship between entities that are several steps apart).

But

8 / 20

Forward and
backward
propagation
for a DNN

For each layer

For multiple layer – multiplications accumulate for all layers

In deep networks or recurrent neural networks, error gradients can accumulate

during an update and result in very large gradients.

The explosion occurs through exponential growth by repeatedly multiplying

gradients through the network layers that have values larger than 1.0.

These in turn result in large updates to the network weights, and in turn, an

unstable network.

At an extreme, the values of weights can become so large as to overflow and result

in NaN values.

When n hidden layers use an activation that give small gradients (below unity, like

the sigmoid function), n small derivatives are multiplied together. Thus, the error

gradient decreases exponentially as we propagate down to the initial layers.

A small gradient means that the weights and biases of the initial layers will not be

updated effectively with each training session. Since these initial layers are often

crucial to recognizing the core elements of the input data, it can lead to overall

inaccuracy of the whole network.

Basic RNN - critical analyses – cont.

𝑎2 = 𝐹 𝑈2𝑥2 + 𝑉2 ∙ 𝐹 𝑈1𝑥1 + 𝑉1 ∙ 𝐹 𝑈0𝑥0

For back-propagation we compute the gradients of the activation function

The problem with the sigmoid-type activation
function occurs when the input values are such
that the output is close to either 0 or 1:
• the gradient is very small

Multiplying many sigmoid gradients: → 0
Vanishing gradients

Basic RNN -
critical analyses

Solution: LSTM neural network

U0

V1

U1 U2

V2

𝑎0 𝑎1 𝑎2

LSTM network Long Short-Term Memory
To reduce the vanishing/exploding gradient problem, reduce the
multiplication of gradients.

The LSTM cell is a specifically designed unit of logic that help reduce the
gradient problem sufficiently to make recurrent neural networks more
useful for long-term memory tasks i.e. text sequence predictions.

The way it does so is by creating an internal memory state which is
simply added to the processed input, which greatly reduces the
multiplicative effect of small gradients.

The time dependence and effects of previous inputs are controlled by
an interesting concept called a forget gate, which determines which
states are remembered or forgotten.

➢ selectively remember or forget information over time

Two other gates, the input gate and output gate, are also featured in
LSTM cells.

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

LSTM excels at capturing long-range dependencies in sequences.

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

LSTM cell structure

xt and at-1 concatenated together enters the top “data rail”

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

current
input

recurrent
output
(activation)

𝒂𝒕−𝟏

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

tanh

𝜎
sigmoid

g

i

The input gate acts as a filter determining which inputs (through g) are

switched on and off (i – between 0 and 1)

g and i - multiplied element-wise (g o i) giving the output of the input stage

U - weight matrix for input
V - weight matrix for recurrent output

𝒂𝒕−𝟏

a

a

g - computed input
i - switch

The value of i is “learned” during
the training by its bi, Ui, Vi

g

i f

The forget-gate: “filtered” state is simply added to the input, rather than
multiplied by it, or mixed with it via weights and a sigmoid activation function as
occurs in a standard recurrent neural network.

This is important to reduce the issue of vanishing gradients.

Forget gate is a sigmoid activated set of nodes which is element-wise multiplied by st-1

to determine which previous states should be

▪ remembered (i.e. forget gate output close to 1, f → 1), st-1 is remembered (add to st)
▪ forgotten (i.e. forget gate output close to 0, f → 0), st-1 is forgotten (no add to st)

𝒂𝒕−𝟏

self-reccurent

a

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

tanh

sigmoid

The output gate has two components

• tanh squashing function
• output sigmoid gating function.

The output sigmoid gating function determine which values of the state are output from the
cell (values of the output gate close to 1, o=1).

g

i f o

The LSTM cell is very flexible, with gating functions controlling

✓ what is taken as input,

✓ what is “remembered” in the internal state variable,

✓ what is output from the LSTM cell.

a

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

Case study

• Implement a time series analysis using a

RNN (LSTM) to predict the prices of Bitcoin
using historical data from CryptoDataDownload

Python, TensorFlow

Colaboratory

http://www.cryptodatadownload.com/

Application
flowchart

Uses
TensorFlow

. csv Original data

Original data
Close values

Standardize features - normalization

Standardize features by removing the mean and scaling to unit variance. The
standard score of a sample x is calculated as:

z = (x - u) / s

 u is the mean of the training samples
 s is the standard deviation of the training samples.

Centering and scaling happen independently on each feature by computing the
relevant statistics on the samples in the training set.

Mean and standard deviation are then stored to be used on later data using
transform.

Standardization of a dataset is a common requirement for many machine learning
estimators: they might behave badly if the individual features do not more or less
look like standard normally distributed data (e.g. Gaussian with 0 mean and unit
variance).

23 / 20

Initial dataset Subtract mean (zero out the mean) Normalize the

variance

Use the same 𝝁, 𝝈 to

normalize all data sets

✓ Training

✓ Validation

✓ Test

Standard
Scaler 𝑥_𝑠𝑐𝑎𝑙𝑒𝑑 =

𝑥 − 𝑥_𝑚𝑒𝑎𝑛

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
Applied separately on
each data feature

Standardizes features by
removing the mean and
scaling to unit variance.

1. Centering: The mean of the feature is subtracted from each feature value (x).

 This shifts the distribution of the feature so that its mean becomes 0.

2. Scaling: Each centered feature value is then divided by the standard deviation.

 This scales the distribution so that its variance becomes 1.

Standardized data

Original data

Standardized
data

Data formatting
window_size = 7; The number of previous days we
consider to predict the bitcoin price for our case.

[[-1.09307145]

[-1.09270821]

[-1.09247866]

[-1.09167145]

[-1.09215073]

[-1.09154532]

[-1.09078856]

[-1.09021847]

[-1.08807683]

[-1.08587718]

[-1.08688872]

[-1.08587214]

[-1.08597052]

[-1.08608655]

[-1.08476222]

[-1.08392726]

[-1.08271645]

[-1.08161158]

[-1.08182347]

[-1.0793867]

... ...]]

[[[-1.09307145]

[-1.09270821]

[-1.09247866]

[-1.09167145]

[-1.09215073]

[-1.09154532]

[-1.09078856]]

[[-1.09270821]

[-1.09247866]

[-1.09167145]

[-1.09215073]

[-1.09154532]

[-1.09078856]

[-1.09021847]]

[[-1.09247866]

[-1.09167145]

[-1.09215073]

[-1.09154532]

[-1.09078856]

[-1.09021847]

[-1.08807683]]

[[-1.09167145]

[-1.09215073]

[-1.09154532]

[-1.09078856]

[-1.09021847]

[-1.08807683]

[-1.08587718]]

.....]]]

[[-1.09021847]

[-1.08807683]

[-1.08587718]

[-1.08688872]

]

Formatted data
(training)

Unformatted
data

Formatted
input
data

Formatted
output

data

window_size =7

1st batch

2nd batch

3rd batch

batch_size = 10

Data flow

RNN…

[[-1.09307145]

[-1.09270821]

[-1.09247866]

[-1.09167145]

[-1.09215073]

[-1.09154532]

[-1.09078856]

[-1.09021847]

[-1.08807683]

[-1.08587718]

[-1.08688872]

[-1.08587214]

[-1.08597052]

[-1.08608655]

[-1.08476222]

[-1.08392726]

[-1.08271645]

[-1.08161158]

[-1.08182347]

[-1.0793867]

... ...]]

Splitting the dataset
Processing sequential data, where the order of elements matters

X_train size: (1000, 7, 1)

y_train size: (1000, 1)

X_test size: (455, 7, 1)
y_test size: (455, 1)

Defining the network

Hyperparameters

Hyperparameters explain higher-level structural information about the RNN
model.

batch_size = 64; This is the number of windows of data we are passing at once.

window_size = 7; The number of previous days we consider to predict the bitcoin
price for our case.

hidden_layers = 3; (LSTM units: 256, 512, 512)

clip_margin = 4; This is to prevent exploding the gradient (to clip gradients below/
above this margin).

learning_rate = 0.00005

epochs = 500; This is the number of iterations (forward and back propagation)
our model needs to make.

LSTM
layer

Define the RNN model

RNN model structure

RNN
model
structure

Configure (compile) and train the model

shuffle

• Data Order: During training, your model sees your training
data in batches. By default (shuffle=True), model.fit() will
randomly shuffle the order of your training data before each
epoch (a full pass through the training data).

• Why it's important: Shuffling helps prevent your model
from learning patterns that are specific to the order of your
data. This can lead to better generalization and performance
on unseen data.

• When to set shuffle=False: You might set shuffle=False in very
specific situations, like when the order of your data is crucial
(e.g., time-series data where the order represents a
sequence of events) and you don't want it to be randomized.

Training evolution 500 epochs

Elapsed time: 4696.791035413742 seconds = 78.30 min = 1h 18 min no GPU

Elapsed time: 279.7024142742157 seconds = 4.66 min T4 GPU 16.8x

MSE (Mean Squared Error)

• Definition: MSE measures the average squared difference between the predicted and actual
values.

• Formula: MSE = (1/m) * Σ(actual - predicted)^2

• Characteristics:

• It gives higher weight to larger errors due to the squaring.

• It is sensitive to outliers.

• It is in the same units as the target variable squared.

• Usefulness: MSE is widely used and is differentiable, which is important for optimization
algorithms.

MAPE (Mean Absolute Percentage Error)

• Definition: MAPE measures the average absolute percentage difference between the
predicted and actual values.

• Formula: MAPE = (1/m) * Σ(|actual - predicted| / |actual|) * 100

• Characteristics:

• It is expressed as a percentage, making it easy to interpret.

• It is less sensitive to outliers compared to MSE.

• It is not defined when actual values are zero.

• Usefulness: MAPE is useful when the relative error is more important than the absolute

error. It is often used in forecasting and time series analysis.

MSE vs MAPE

MSE vs MAPE

Choosing between MSE and MAPE

The choice between MSE and MAPE depends on your specific needs and the
nature of your data.

➢ If you want to penalize larger errors more and your data has no zero
values, MSE might be a good choice.

➢ If you prefer a more interpretable metric that is less sensitive to outliers,
MAPE might be more suitable.

500 epochs

500 epochs

Prediction 500 epochs

Prediction 500 epochs

Train longer, 1000 epochs

15/15 - 0s - 6ms/step - loss: 0.0095 - mape: 41.6279

Accuracy in the test data: 41.62788391113281

Elapsed time: 581.6502554416656 seconds = 9.67 min T4 GPU

Prediction 1000 epochs

Prediction 1000 epochs

500 epochs

1000 epochs

500 epochs

1000 epochs

mape: 44.2792

mape: 41.6279

https://colab.research.google.com/drive/1zqHQZYvbeQMRtAQCl9A_64cLBeoI92-A?usp=sharing

Using the Notebook file

This is a link to the application notebook:

https://colab.research.google.com/drive/1zqHQZYvbeQMRtAQCl9A_64cLBeoI92-A?usp=sharing

	Slide 1
	Slide 2
	Slide 3: RNN structure
	Slide 4: RNN structure
	Slide 5: Example
	Slide 6
	Slide 7: Basic RNN - critical analyses
	Slide 8: Forward and backward propagation for a DNN
	Slide 9: Basic RNN - critical analyses – cont.
	Slide 10: Basic RNN - critical analyses
	Slide 11: LSTM network
	Slide 13: LSTM cell structure
	Slide 14
	Slide 15
	Slide 16
	Slide 18: Case study
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Standard Scaler
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Training evolution 500 epochs
	Slide 38: MSE vs MAPE
	Slide 39: MSE vs MAPE
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50: Using the Notebook file

