RNN
Recurrent Neural Network

Artificial neural network that are able to recognize and

predict sequences of data such as text, genomes,
handwriting, spoken word, or numerical time series data.

They have loops that allow a consistent flow of
information and can work on sequences of arbitrary
lengths.

Make use of internal state (memory) to process a
sequence of inputs.

https://heartbeat.fritz.ai/a-beginners-guide-to-implementing-long-
short-term-memory-networks-Istm-eb7a2ff09a27
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RNN utilization

Processing sequential data, where the order of elements matters
(e.g., time series, text, language).

RNNs are used to solve several problems:

* Language translation and modeling

* Speech recognition

* Image captioning

* Time series data such as stock prices (tell when to buy or sell)

* Automatic (autonomous?) driving systems to anticipate car
trajectories; help avoid accidents.

https://heartbeat.fritz.ai/a-beginners-guide-to-implementing-long-
short-term-memory-networks-Istm-eb7a2ff09a27
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RNN structure
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hidden layer is fed
back into the same
hidden layer

We can model time or
sequence-dependent
data (time series)

The weights of the connections between time steps are shared i.e.
there isn't a different set of weights for each time step.

https://adventuresinmachinelearning.com/recurrent-neural-networks-
Istm-tutorial-tensorflow/
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"A girl walked into a bar, and she said: ‘Can | have a drink please?". Exa m ple
The bartender said ‘Certainly {?}"

2 canbe "miss’, “ma'am’, ..
“sir”, "Mister”, .. also could fit

To get the correct gender of the noun, the neural network needs to recall that
two previous words designating the likely gender (i.e., “girl’ and "she”) were used.
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Serial-to- parallel conversion of data sequence to
supply a stream of data to the RNN

https://adventuresinmachinelearning.com/recurrent-neural-

networks-Istm-tutorial-tensorflow/
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Basic RNN - critical analyses

For RNN, ideally, we would want to have long memories (many

time steps), so the network can connect data relationships at
significant distances in time.

An RNN with long memory could make real progress in

understanding how language and narrative work, how stock
market events are correlated, etc.

But _
RNNs present a major setback

o vanishing gradient / exploding gradient

They have difficulties in learning long-range dependencies
(relationship between entities that are several steps apart).

The more time steps we have, the more chance we have of
back-propagation error gradients:

« accumulating and exploding (for values > 1)
« vanishing down to nothing  (for values < 1)
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Basic RNN - critical analyses — cont.

In deep networks or recurrent neural networks, error gradients can accumulate
during an update and result in very large gradients.

The explosion occurs through exponential growth by repeatedly multiplying
gradients through the network layers that have values larger than 1.0.

These in turn result in large updates to the network weights, and in turn, an
unstable network.

At an extreme, the values of weights can become so large as to overflow and result
In NaN values.

When n hidden layers use an activation that give small gradients (below unity, like
the sigmoid function), n small derivatives are multiplied together. Thus, the error
gradient decreases exponentially as we propagate down to the initial layers.

A small gradient means that the weights and biases of the initial layers will not be
updated effectively with each training session. Since these initial layers are often
crucial to recognizing the core elements of the input data, it can lead to overall
Inaccuracy of the whole network.
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For back-propagation we compute the gradients of the activation function

The problem with the sigmoid-type activation

function occurs when the input values are such 10|

that the output is close to either 0 or 1:
* the gradientis very small
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Multiplying many sigmoid gradients: >0 »
Vanishing gradients
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LSTM network Long Short-Term Memory

To reduce the vanishing/exploding gradient problem, reduce the
multiplication of gradients.

The LSTM cell is a specifically designed unit of logic that help reduce the
gradient problem sufficiently to make recurrent neural networks more
useful for long-term memory tasks i.e. text sequence predictions.

The way it does so is by creating an internal memory state which is
simply added to the processed input, which greatly reduces the
multiplicative effect of small gradients.

The time dependence and effects of previous inputs are controlled by
an interesting concept called a forget gate, which determines which
states are remembered or forgotten.

> selectively remember or forget information over time

Two other gates, the input gate and output gate, are also featured in
LSTM cells.

LSTM excels at capturing long-range dependencies in sequences.

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/
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LSTM cell structure

X, and a, ; concatenated together enters the top “data rail”

recurrent

a;_1
output
(activation)

ﬁ;;:\
current x, — ./

input

https://adventuresinmachinelearning.com/recurrent-neural-networks-Istm-tutorial-tensorflow/
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g - computed input
i - switch

U - weight matrix for input
V - weight matrix for recurrent output

g = tanh(b’ + 2z U9+ a;—1VY)

The value of j is “learned” during

g — g(bi + thﬂ. 1+ at—lvi) the training by its b/, U’, V/

The input gate acts as a filter determining which inputs (through g) are
switched on and off (i — between 0 and 1)

g and i - multiplied element-wise (g o /) giving the output of the input stage



T —

self-reccurent

Forget gate is a sigmoid activated set of nodes which is element-wise multiplied by St1
to determine which previous states should be
= remembered (i.e. forget gate output close to 1, f > 1), s, ; is remembered (add to s,)
= forgotten (i.e. forget gate output close to O, f > 0), s, ; is forgotten (no add to s,)

f = U(b'f—l— 33th‘|— at—lvf) St — 84710 f —+ qo 7

The forget-gate: *filtered” state is simply added to the input, rather than
multiplied by it, or mixed with it via weights and a sigmoid activation function as
occurs in a standard recurrent neural network.

This is important to reduce the issue of vanishing gradients.



The output gate has two components
e tanh squashing function
e output sigmoid gating function.
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The output sigmoid gating function determine which values of the state are output from the

cell (values of the output gate close to 1, 0=1).

o=oc(b”+zU%+ 0, 1V°)

h; = tanh(s;) oo

The LSTM cell is very flexible, with gating functions controlling

v" what is taken as input,

v" what is “remembered” in the internal state variable,

v what is output from the LSTM cell.

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/
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Case study

* Implement a time series analysis using a

RNN (LSTM) to predict the prices of Bitcoin
using historical data from CryptoDataDownload

Python, TensorFlow
Colaboratory


http://www.cryptodatadownload.com/

Application
flowchart

Uses
TensorFlow

Impart libraries
Load data
Explore and preprocess data
View dataset
Standardize features
Format and split the dataset
RNN ahitecture
Define the sequential model
Compile and train the RNN model
Evaluate the CNN model

FPredict
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1457
1458
1458
1468
1461

Date
2816-12-14
2816-12-15
2016-12-16
2016-12-17
2016-12-13

Open
780085005
780.070007
776.563013
785.166016
791.08799%

2026-12-16 18553, 208828
2026-12-11 18263.929685
2026-12-12 18851.328513
2028-12-13  18396.765625
2028-12-14  19206.191563

High
782.833997
781.434998
785.831952
792.568472
794, 737468

18553.208828
18208.453125
18519.558751
19381.535156
19298.531250

Low
776.838948
17.802802
778.963613
764.864814
768.626801

17957. 864453
17619.533203
13646.841616
18734, 352851
15612, 798934

(791431018

18264,992188
13658, 994297
18583,65625¢
19142,382813
19188.567188

Original data

(lose

778.888013
734.,986%982
799.,828974
799.,530024

—

Ady Close
781.451618
778.858613
784.960952
798.84897¢
798.539629

Volume
7597590680
51530896
53003260
78939560
0H524468

18264,992188 25547132265
18658.994297  2791%489585
18863.650250 21752588562
19142382815 25450468637
10188.367188 23987949568



Original data

[ 781.481818 778.888013 784.086982 ... 18863.85625 19142.382812

19188.367188] Close Values

The size of the dataset is: 1482
Bitcoin prices from 2016-12-14 to 2020-12-14

20000 1 — Price

17500 A

15000 A

12500 T

10000 A

Price of Bitcoin

7500 T

5000

2500 7

T T T T T T T
0 200 400 600 800 1000 1200 1400
Days

max: 19625.835938 min: 777.75781% mean: 7245.143868168262



Standardize features - normalization

Standardize features by removing the mean and scaling to unit variance. The
standard score of a sample x is calculated as:

z=(x-u)/s

u is the mean of the training samples
s is the standard deviation of the training samples.

Centering and scaling happen independently on each feature by computing the
relevant statistics on the samples in the training set.

Mean and standard deviation are then stored to be used on later data using
transform.

Standardization of a dataset is a common requirement for many machine learning
estimators: they might behave badly if the individual features do not more or less
look like standard normally distributed data (e.g. Gaussian with 0 mean and unit
variance).



Standard
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1. Centering: The mean of the feature is subtracted from each feature value (x). e v 2

This shifts the distribution of the feature so that its mean becomes 0.

2. Scaling: Each centered feature value is then divided by the standard deviation.
This scales the distribution so that its variance becomes 1.

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaled _data = scaler.fit_transform(dataset.reshape(-1, 1))



Standardized data

Normalised Bitcoin prices from 2016-12-14 to 2020-12-14

—— Standardized price

The standardized dataset:
[[-1.65229279]
[-1.65316014]

29 [-1.65141782]

[ 2.95467923)

s
£ [ 3.04126721]
5 11 [ 3.e520221 1]
s
=
x
1]
A o-
_1-

T T T T T T
0 200 400 600 800 1000 1200 1400
Days

max: [3.16485135] min: [-1.65324475] mean: 7.7761174912186687e-17



Bitcoin prices from 2016-12-14 to 2020-12-14

Original data
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Data formatting
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window_size = 7; The number of previous days we
consider to predict the bitcoin price for our case.

# This function 1s used to create Features and Labels (targets) datasets; By windowing the data.

# Input: data - dataset used in the project

# window size - how many data points we are going to use to predict the next datapoint in the seguence
# [Example: if window size = 7 we are going to use 7 previous day to predict todays stock prices]

# Outputs: X - features splitted into windows of datapoints (if window size = 1, X = [len(data)-1, 7])
# y - 'labels’, actually this is the next number in the sequence, this number we are trying to predict

def window data(data, window size=3):

X =[] # input data
y =[] # output data (target)
i=9

while (i + window size) <= len(data) - 1:
X.append(data[i:i+window size])
y.append(data[i+window size])
1+4=1
assert len(X) == len(y)
# Assertions are simply boolean expressions that checks if the conditions return true or not.
# If it is true, the program does nothing and move to the next line of code.
# However, if it's false, the program stops and throws an error.
# It is also a debugging tool as it brings the program on halt as soon as any error is occurred.
return X, vy

#windowing the data with window data function
windowSize = 7
X, vy = window data(scaled data, window size = windowSize)




Formatted data
(training)

window_size =7

input
data
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Splitting the dataset

Processing sequential data, where the order of elements matters

# Split the data into training and test set; not random
trainSize = 1000

X_train = np.array(X[:trainSize])
y_train = np.array(y[:trainSize])

X_test
y_test

np.array(X[trainSize:])
np.array(y[trainSize:])

X_train size: (1000, 7, 1)
y_train size: (1000, 1)

X_test size: (455, 7, 1)
y_test size: (455, 1)



Defining the network

Hyperparameters

Hyperparameters explain higher-level structural information about the RNN
model.

batch_size = 64; This is the number of windows of data we are passing at once.

window_size = 7; The number of previous days we consider to predict the bitcoin
price for our case.

hidden_layers = 3; (LSTM units: 256, 512, 512)

clip_margin = 4; This is to prevent exploding the gradient (to clip gradients below/
above this margin).

learning_rate = 0.00005

epochs = 500; This is the number of iterations (forward and back propagation)
our model needs to make.



keras.layers . LSTM(
units,
activation="tanh™,
recurrent _activation-"sigmoid”,
use bias-True,
kernel initializer—-"glorot uniform”,
recurrent _initializer="orthogonal”™,
bias initializer="zeros",
unit forget bias=True,
kernel regularizer-=None,
recurrent regularizer=None,
bias regularizer=None,
activity regularizer=None,
kernel constraint=None,
recurrent constraint=None,

bias constraint=None,

dropout=0.6,

recurrent dropout-6.6,
seed=None,
return_sequences-False,
return_state-False,

go backwards=False,
stateful=-False,
unroll=False,

use cudnn="auto™,

kwargs




Define the RNN model

## define a sequential model
my RNN = Sequential (name='my RNN') # sequential model
## add layers
Ly_RMN.add(LSTM(units=256, return_sequences=True,
input_shape = (X _train.shape[1], X _train.shape[2]), name='LSTM 1'))
# units - Positive integer, dimensionality of the output space
my RNN.add(Dropout(8.25))
my RNN.add(LSTM(units=512, return_sequences=True, name='LSTM 2'))
my RNN.add(Dropout(8.25))
my RNN.add(LSTM(units=512, return_sequences=False, activation=None, name='LSTM 3'))
my RNN.add(Dropout(8.25))

ad
ad
ad
my RNN.add(Dense(units=y train.shape[1], activation=None))



RNN model structure

Model: "my RNN"

Layer (type) Output Shape Param #
LSTM 1 (LSTM) (None, 7, 256) 264,192
dropout (Dropout) (None, 7, 256) e
LSTM 2 (LSTM) (None, 7, 512) 1,574,912
dropout_1 (Dropout) (None, 7, 512) e
LSTM 3 (LSTM) (None, 512) 2,099,200
dropout_2 (Dropout) (None, 512) e
dense (Dense) (None, 1) 513

Total params: 3,938,817 (15.83 MB)
Trainable params: 3,938,817 (15.83 MB)
Non-trainable params: © (.00 B)



RNN
model
structure

Input shape: (None, 7, 1) Output shape: (None, 7, 256)

dropout (Dropout)

Input shape: (None, 7, 256) Output shape: (None, 7, 256)

Input shape: (None, 7, 256) Output shape: (None, 7, 512)

dropout_1 (Dropout)

Input shape: (None, 7, 512) Output shape: (None, 7, 512)

Input shape: (None, 7, 512) Output shape: (None, 512)

dropout_2 (Dropout)

Input shape: (None, 512) Output shape: (None, 512)

dense (Dense)

Input shape: (None, 512) Output shape: (None, 1)
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Configure (compile) and train the model

## compile the model
opt = tf.keras.optimizers.Adam(learning rate=0.00005) # default is a.aaﬂ

my RNN.compile(optimizer = opt, # optimiser = 'adam'
loss ="mse’,
metrics =[ 'mape’'] # mean absolute percentage error

)

## train the model

max_epochs = 560

hist = my RNN.fit(X_train, y train,
epochs = max_epochs,
validation_data = (X_test, y_test),
batch_size = 64,

verbose = 1,

shuffle = True);>




shuffle

- Data Order: During training, your model sees your training
data in batches. By default (shuffle=True), model.fit() will
randomly shuffle the order of your training data before each
epoch (a full pass through the training data).

- Why it's important: Shuffling helps prevent your model
from learning patterns that are specific to the order of your
data. This can lead to better generalization and performance
on unseen data.

- When to set shuffle=False: You might set shuffle=False in very
specific situations, like when the order of your data is crucial
(e.g., time-series data where the order represents a

sequence of events) and you don't want it to be randomized.



Training evolution 500 epochs

Loss and accuracy during training

Model loss during training Model mean absolute percentage error
— Train 180 1 — Train
081 —— Validation — Val
160 -
140 -
0.6
120 -
L
%]
8 04- gma-
80 -
0.2 1 60
40 -
M-‘-_-'_A . - £ R et i
0.0_ T T T T T T 2D_ T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch

15/15 - @s - loss: 8.8111 - mape: 44.2792 - 85ms/epoch - 6ms/step
Accuracy in the test data: 44.279178589598234

Elapsed time: 4696.791035413742 seconds = 78.30 min =1h 18 min no GPU
Elapsed time: 279.7024142742157 seconds = 4.66 min T4 GPU  16.8x



MSE (Mean Squared Error) MS E VS MAPE

« Definition: MSE measures the average squared difference between the predicted and actual
values.

« Formula: MSE = (1/m) * 2(actual - predicted)*2

» Characteristics:
« |t gives higher weight to larger errors due to the squaring.
« Itis sensitive to outliers.
« |tisinthe same units as the target variable squared.

- Usefulness: MSE is widely used and is differentiable, which is important for optimization
algorithms.

MAPE (Mean Absolute Percentage Error)

* Definition: MAPE measures the average absolute percentage difference between the
predicted and actual values.

« Formula: MAPE = (1/m) * X(|actual - predicted| / |actual|) * 100
 Characteristics:
« |tis expressed as a percentage, making it easy to interpret.
» Itis less sensitive to outliers compared to MSE.
* Itis not defined when actual values are zero.

« Usefulness: MAPE is useful when the relative error is more important than the absolute
error. It is often used in forecasting and time series analysis.



MSE vs MAPE

Comparison
Feature MSE MAPE
Scale Same units as target variable squared Percentage
Outlier Sensitivity High Low
Interpretability Less intuitive More intuitive
Use Cases Regression, optimization Forecasting, time series

Choosing between MSE and MAPE

The choice between MSE and MAPE depends on your specific needs and the
nature of your data.

> |If you want to penalize larger errors more and your data has no zero
values, MSE might be a good choice.

> If you prefer a more interpretable metric that is less sensitive to outliers,
MAPE might be more suitable.
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Train longer, 1000 epochs

Loss and accuracy during training
Model mean absolute percentage error

Model loss during training
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Using the Notebook file

This is a link to the application notebook:

https://colab.research.google.com/drive/1zgHQZYvbeQMRtAQCI9A 64cLBeol92-A?usp=sharing



https://colab.research.google.com/drive/1zqHQZYvbeQMRtAQCl9A_64cLBeoI92-A?usp=sharing
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