
RNN

Recurrent Neural Network

Artificial neural network that are able to recognize and 

predict sequences of data such as text, genomes, 
handwriting, spoken word, or numerical time series data. 

They have loops that allow a consistent flow of 
information and can work on sequences of arbitrary 
lengths.

Make use of internal state (memory) to process a 
sequence of inputs.

https://heartbeat.fritz.ai/a-beginners-guide-to-implementing-long-
short-term-memory-networks-lstm-eb7a2ff09a27 

https://heartbeat.fritz.ai/a-beginners-guide-to-implementing-long-short-term-memory-networks-lstm-eb7a2ff09a27
https://heartbeat.fritz.ai/a-beginners-guide-to-implementing-long-short-term-memory-networks-lstm-eb7a2ff09a27


RNNs are used to solve several problems:

• Language translation and modeling

• Speech recognition

• Image captioning

• Time series data such as stock prices (tell when to buy or sell)

• Automatic (autonomous?) driving systems to anticipate car 
trajectories; help avoid accidents.

https://heartbeat.fritz.ai/a-beginners-guide-to-implementing-long-
short-term-memory-networks-lstm-eb7a2ff09a27 

RNN utilization
Processing sequential data, where the order of elements matters 
(e.g., time series, text, language).

https://heartbeat.fritz.ai/a-beginners-guide-to-implementing-long-short-term-memory-networks-lstm-eb7a2ff09a27
https://heartbeat.fritz.ai/a-beginners-guide-to-implementing-long-short-term-memory-networks-lstm-eb7a2ff09a27


RNN structure

https://adventuresinmachinelearning.com/recurrent-neural-networks-
lstm-tutorial-tensorflow/ 

The output of the 
hidden layer is fed 
back into the same 
hidden layer

We can model time or
sequence-dependent 
data (time series)

The weights of the connections between time steps are shared i.e. 
there isn’t a different set of weights for each time step.
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t – time moment

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/
https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/
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RNN structure

𝑎𝑡 = 𝐹 𝑈 𝑥𝑡 + 𝑉 𝑎𝑡−1
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Example“A girl walked into a bar, and she said: ‘Can I have a drink please?’. 

The bartender said ‘Certainly {?}”

{?}      can be      “miss”, “ma’am”, …

“sir”, “Mister”, … also could fit

To get the correct gender of the noun, the neural network needs to recall that 
two previous words designating the likely gender (i.e., “girl” and “she”) were used. 

Unrolled RNNRNN

Serial-to- parallel conversion of data sequence to 
supply a stream of data to the RNN

https://adventuresinmachinelearning.com/recurrent-neural-
networks-lstm-tutorial-tensorflow/ 

𝑎𝑡 𝑎0 𝑎1 𝑎2 𝑎𝑡

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/
https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/


many-to-one model

inputs:    “A girl walked into a bar…” 
outputs (predicted):   h0 to  ht. 

many-to-many model

one-to-many model

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/ 

𝑎𝑡 𝑎0 𝑎1 𝑎2 𝑎𝑡

𝑎𝑡

𝑎0 𝑎1 𝑎2 𝑎𝑡

input-to-activation model

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/


Basic RNN - critical analyses

For RNN, ideally, we would want to have long memories (many 
time steps), so the network can connect data relationships at 
significant distances in time.
An RNN with long memory could make real progress in 
understanding how language and narrative work, how stock 
market events are correlated, etc.

The more time steps we have, the more chance we have of 
back-propagation error gradients: 

• accumulating and exploding  (for values > 1)
• vanishing down to nothing       (for values < 1)

RNNs present a major setback
o vanishing gradient / exploding gradient

They have difficulties in learning long-range dependencies 
(relationship between entities that are several steps apart).

But
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Forward and 
backward 
propagation 
for a DNN 

For each layer

For multiple layer – multiplications accumulate for all layers



In deep networks or recurrent neural networks, error gradients can accumulate 

during an update and result in very large gradients. 

The explosion occurs through exponential growth by repeatedly multiplying 

gradients through the network layers that have values larger than 1.0.

These in turn result in large updates to the network weights, and in turn, an 

unstable network. 

At an extreme, the values of weights can become so large as to overflow and result 

in NaN values.

When n hidden layers use an activation that give small gradients (below unity, like 

the sigmoid function), n small derivatives are multiplied together. Thus, the error 

gradient decreases exponentially as we propagate down to the initial layers.

A small gradient means that the weights and biases of the initial layers will not be 

updated effectively with each training session. Since these initial layers are often 

crucial to recognizing the core elements of the input data, it can lead to overall 

inaccuracy of the whole network.

Basic RNN - critical analyses – cont. 



𝑎2 = 𝐹 𝑈2𝑥2 + 𝑉2 ∙ 𝐹 𝑈1𝑥1 + 𝑉1 ∙ 𝐹 𝑈0𝑥0

For back-propagation we compute the gradients of the activation function

The problem with the sigmoid-type activation 
function occurs when the input values are such 
that the output is close to either 0 or 1:   
• the gradient is very small

Multiplying many sigmoid gradients:     → 0 
Vanishing gradients

Basic RNN - 
critical analyses

Solution:   LSTM neural network

U0

V1

U1 U2

V2

𝑎0 𝑎1 𝑎2



LSTM network Long Short-Term Memory
To reduce the vanishing/exploding gradient problem, reduce the 
multiplication of gradients. 

The LSTM cell is a specifically designed unit of logic that help reduce the 
gradient problem sufficiently to make recurrent neural networks more 
useful for long-term memory tasks i.e. text sequence predictions. 

The way it does so is by creating an internal memory state which is 
simply added to the processed input, which greatly reduces the 
multiplicative effect of small gradients. 

The time dependence and effects of previous inputs are controlled by 
an interesting concept called a forget gate, which determines which 
states are remembered or forgotten. 

➢ selectively remember or forget information over time

Two other gates, the input gate and output gate, are also featured in 
LSTM cells.

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/ 

LSTM excels at capturing long-range dependencies in sequences.

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/


LSTM cell structure

xt and at-1 concatenated together enters the top “data rail”

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/ 

current 
input 

recurrent 
output 
(activation)

𝒂𝒕−𝟏

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/


tanh

𝜎
sigmoid

g

i

The input gate acts as a filter determining which inputs (through g) are 

switched on and off (i – between 0 and 1)

g and i  - multiplied element-wise (g o i) giving the output of the input stage

U - weight matrix for input
V - weight matrix for recurrent output

𝒂𝒕−𝟏

a

a

g - computed input
i - switch

The value of i is “learned” during 
the training by its bi, Ui, Vi



g

i f

The forget-gate: “filtered” state is simply added to the input, rather than 
multiplied by it, or mixed with it via weights and a sigmoid activation function as 
occurs in a standard recurrent neural network. 

This is important to reduce the issue of vanishing gradients.

Forget gate is a sigmoid activated set of nodes which is element-wise multiplied by st-1 

to determine which previous states should be 

▪ remembered (i.e. forget gate output close to 1, f → 1), st-1 is remembered (add to st) 
▪ forgotten       (i.e. forget gate output close to 0, f → 0), st-1 is forgotten  (no add to st) 

𝒂𝒕−𝟏

self-reccurent

a



https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/ 

tanh

sigmoid

The output gate has two components 

• tanh squashing function
• output sigmoid gating function. 

The output sigmoid gating function determine which values of the state are output from the 
cell (values of the output gate close to 1, o=1). 

g

i f o

The LSTM cell is very flexible, with gating functions controlling 

✓ what is taken as input, 

✓ what is “remembered” in the internal state variable, 

✓ what is output from the LSTM cell.

a

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/


Case study 

• Implement a time series analysis using a 

RNN (LSTM) to predict the prices of Bitcoin  
using historical data from CryptoDataDownload

Python, TensorFlow

Colaboratory

http://www.cryptodatadownload.com/


Application 
flowchart

Uses 
TensorFlow



. csv Original data



Original data
Close values



Standardize features - normalization

Standardize features by removing the mean and scaling to unit variance. The 
standard score of a sample x is calculated as:

z = (x - u) / s

          u is the mean of the training samples
          s is the standard deviation of the training samples.

Centering and scaling happen independently on each feature by computing the 
relevant statistics on the samples in the training set. 

Mean and standard deviation are then stored to be used on later data using 
transform.

Standardization of a dataset is a common requirement for many machine learning 
estimators: they might behave badly if the individual features do not more or less 
look like standard normally distributed data (e.g. Gaussian with 0 mean and unit 
variance).
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Initial dataset Subtract mean (zero out the mean) Normalize the 

variance

Use the same 𝝁, 𝝈  to 

normalize all data sets 

✓ Training

✓ Validation

✓ Test

Standard 
Scaler 𝑥_𝑠𝑐𝑎𝑙𝑒𝑑 =

𝑥 − 𝑥_𝑚𝑒𝑎𝑛

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
Applied separately on 
each data feature

Standardizes features by 
removing the mean and 
scaling to unit variance.

1.  Centering: The mean of the feature is subtracted from each feature value (x). 

                         This shifts the distribution of the feature so that its mean becomes 0.

2.  Scaling:  Each centered feature value is then divided by the standard deviation. 

                      This scales the distribution so that its variance becomes 1.



Standardized data



Original data

Standardized 
data



Data formatting
window_size = 7;  The number of previous days we 
consider to predict the bitcoin price for our case.



[[-1.09307145] 

[-1.09270821] 

[-1.09247866] 

[-1.09167145] 

[-1.09215073] 

[-1.09154532] 

[-1.09078856] 

[-1.09021847] 

[-1.08807683] 

[-1.08587718] 

[-1.08688872] 

[-1.08587214] 

[-1.08597052] 

[-1.08608655] 

[-1.08476222] 

[-1.08392726] 

[-1.08271645] 

[-1.08161158] 

[-1.08182347] 

[-1.0793867 ]

... ...     ]]

[[[-1.09307145] 

[-1.09270821] 

[-1.09247866] 

[-1.09167145] 

[-1.09215073] 

[-1.09154532] 

[-1.09078856]]

[[-1.09270821] 

[-1.09247866] 

[-1.09167145] 

[-1.09215073] 

[-1.09154532] 

[-1.09078856] 

[-1.09021847]]

[[-1.09247866] 

[-1.09167145] 

[-1.09215073] 

[-1.09154532] 

[-1.09078856] 

[-1.09021847] 

[-1.08807683]]

[[-1.09167145] 

[-1.09215073] 

[-1.09154532] 

[-1.09078856] 

[-1.09021847] 

[-1.08807683] 

[-1.08587718]]

.....      ]]]

[[-1.09021847]

[-1.08807683]

[-1.08587718]

[-1.08688872]

 ... ...    ]

Formatted data
(training)

Unformatted 
data

Formatted 
input 
data 

Formatted 
output 

data 

window_size =7

1st batch

2nd batch

3rd batch

batch_size = 10



Data flow

RNN…

[[-1.09307145] 

[-1.09270821] 

[-1.09247866] 

[-1.09167145] 

[-1.09215073] 

[-1.09154532] 

[-1.09078856] 

[-1.09021847] 

[-1.08807683] 

[-1.08587718] 

[-1.08688872] 

[-1.08587214] 

[-1.08597052] 

[-1.08608655] 

[-1.08476222] 

[-1.08392726] 

[-1.08271645] 

[-1.08161158] 

[-1.08182347] 

[-1.0793867 ]

... ...     ]]



Splitting the dataset
Processing sequential data, where the order of elements matters 

X_train size: (1000, 7, 1)

y_train size: (1000, 1)

X_test size: (455, 7, 1)
y_test size: (455, 1)



Defining the network

Hyperparameters

Hyperparameters explain higher-level structural information about the RNN 
model.

batch_size = 64;  This is the number of windows of data we are passing at once.

window_size = 7;  The number of previous days we consider to predict the bitcoin 
price for our case.

hidden_layers = 3;  (LSTM units: 256, 512, 512)

clip_margin = 4; This is to prevent exploding the gradient (to clip gradients below/ 
above this margin).

learning_rate = 0.00005

epochs = 500;  This is the number of iterations (forward and back propagation) 
our model needs to make.



LSTM 
layer



Define the RNN model



RNN model structure



RNN 
model 
structure



Configure (compile) and train the model



shuffle

• Data Order: During training, your model sees your training 
data in batches. By default (shuffle=True), model.fit() will 
randomly shuffle the order of your training data before each 
epoch (a full pass through the training data).

• Why it's important: Shuffling helps prevent your model 
from learning patterns that are specific to the order of your 
data. This can lead to better generalization and performance 
on unseen data.

• When to set shuffle=False: You might set shuffle=False in very 
specific situations, like when the order of your data is crucial 
(e.g., time-series data where the order represents a 
sequence of events) and you don't want it to be randomized.



Training evolution 500 epochs

Elapsed time: 4696.791035413742 seconds = 78.30 min = 1h 18 min   no GPU

Elapsed time: 279.7024142742157 seconds = 4.66 min T4 GPU      16.8x



MSE (Mean Squared Error)

• Definition: MSE measures the average squared difference between the predicted and actual 
values.

• Formula: MSE = (1/m) * Σ(actual - predicted)^2

• Characteristics:

• It gives higher weight to larger errors due to the squaring.

• It is sensitive to outliers.

• It is in the same units as the target variable squared.

• Usefulness: MSE is widely used and is differentiable, which is important for optimization 
algorithms.

MAPE (Mean Absolute Percentage Error)

• Definition: MAPE measures the average absolute percentage difference between the 
predicted and actual values.

• Formula: MAPE = (1/m) * Σ(|actual - predicted| / |actual|) * 100

• Characteristics:

• It is expressed as a percentage, making it easy to interpret.

• It is less sensitive to outliers compared to MSE.

• It is not defined when actual values are zero.

• Usefulness: MAPE is useful when the relative error is more important than the absolute 

error. It is often used in forecasting and time series analysis.

MSE vs MAPE



MSE vs MAPE

Choosing between MSE and MAPE

The choice between MSE and MAPE depends on your specific needs and the 
nature of your data. 

➢ If you want to penalize larger errors more and your data has no zero 
values, MSE might be a good choice. 

➢ If you prefer a more interpretable metric that is less sensitive to outliers, 
MAPE might be more suitable. 



500 epochs



500 epochs



Prediction 500 epochs



Prediction 500 epochs



Train longer, 1000 epochs

15/15 - 0s - 6ms/step - loss: 0.0095 - mape: 41.6279 

Accuracy in the test data: 41.62788391113281

Elapsed time: 581.6502554416656 seconds = 9.67 min  T4 GPU



Prediction 1000 epochs



Prediction 1000 epochs





500 epochs

1000 epochs



500 epochs

1000 epochs

mape: 44.2792 

mape: 41.6279 



https://colab.research.google.com/drive/1zqHQZYvbeQMRtAQCl9A_64cLBeoI92-A?usp=sharing 

Using the Notebook file 

This is a link to the application notebook:

https://colab.research.google.com/drive/1zqHQZYvbeQMRtAQCl9A_64cLBeoI92-A?usp=sharing
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