
Deploying ANN on low-cost platforms 

1. Introduction 

Deploying artificial neural networks (ANNs) on low-cost platforms is a critical step in transitioning 

machine learning (ML) models from research to real-world applications. These platforms include 

devices like Raspberry Pi, NVIDIA Jetson Nano, and microcontrollers such as ESP32 or Arduino 

with additional hardware. Despite their limited computational power and memory, they enable cost-

effective solutions for edge computing, IoT (Internet of Things), and embedded AI systems. 

Edge computing is a distributed computing paradigm that brings computation and data storage closer 

to the sources of data, such as IoT devices, sensors, and users. Instead of relying on a central cloud 

server, processing is done at the "edge" of the network, closer to where the data is generated and 

needed. 

Key characteristics of edge computing: 

1. Decentralized processing: Computation happens on devices or servers located at the edge of 

the network, like routers, gateways, or even the devices themselves. 

2. Reduced latency: By processing data locally, edge computing significantly reduces the delay 

(latency) in getting results. This is crucial for applications that require real-time responses, 

such as autonomous vehicles, industrial automation, and online gaming. 

3. Improved bandwidth efficiency: Processing data at the edge reduces the amount of data that 

needs to be sent to the cloud, freeing up bandwidth and reducing network congestion. 

4. Increased security and privacy: Keeping sensitive data at the edge can enhance security and 

privacy by reducing the risk of data breaches during transmission to and from the cloud. 

5. Enhanced reliability and resilience: Edge computing systems can be designed to operate 

even when the connection to the cloud is disrupted, ensuring continued functionality in remote 

or challenging environments. 

Benefits of edge computing: 

• Real-time insights: Edge computing enables real-time analysis of data, allowing for 

immediate responses and actions. 

• Improved application performance: Reduced latency leads to faster and more responsive 

applications. 

• Cost savings: By reducing data transmission and cloud storage needs, edge computing can 

lower operational costs. 

• Enhanced security: Edge computing can provide better security for sensitive data by keeping 

it closer to the source. 

• Increased scalability: Edge computing systems can be easily scaled by adding more edge 

devices or servers. 

Examples of edge computing: 

• Self-driving cars: Autonomous vehicles need to make real-time decisions based on sensor 

data, making edge computing essential for their operation. 

• Industrial automation: Edge computing is used in factories to monitor and control machines, 

improving efficiency and safety. 

• Smart cities: Edge computing helps analyze data from sensors in smart cities to manage 

traffic, optimize energy consumption, and improve public safety. 



• Healthcare: Edge computing is used in healthcare to analyze patient data in real-time, 

enabling faster diagnoses and treatments. 

Platform Descriptions: 

• Raspberry Pi: A small, affordable computer with GPIO pins, widely used for prototyping 

and deployment of AI applications. Models like Raspberry Pi 4 offer up to 8GB RAM, making 

them suitable for lightweight neural network inference.  

• NVIDIA Jetson Nano: A compact AI computing device with a GPU for accelerating neural 

network inference, suitable for tasks like computer vision and robotics. It supports 

TensorFlow and PyTorch for efficient deployment.  

• Arduino with Neural Networks: Arduino boards, particularly with hardware like Arduino 

Nano 33 BLE Sense, can be used for deploying simple ANNs in applications like signal 

processing and anomaly detection. They are best suited for low-power environments where 

small-scale models suffice.  

2. Challenges and Advantages of Low-Cost Platforms 

Challenges: 

• Limited Resources: Low-cost platforms often have restricted computational power, memory, 

and storage. 

• Energy Efficiency: Power consumption is a crucial factor for battery-operated devices. 

• Latency Constraints: Ensuring real-time inference is challenging with limited hardware 

capabilities. 

• Compatibility: Running Python-based Keras models on resource-constrained devices 

requires compatibility adjustments. 

Advantages: 

• Affordability: Low-cost platforms reduce deployment costs, making AI accessible. 

• Portability: Compact and lightweight devices are ideal for remote or embedded applications. 

• Scalability: Easy to replicate for distributed systems or IoT networks. 

3. Optimizing Neural Networks for Deployment 

To deploy neural networks effectively on low-cost platforms, certain optimization techniques are 

necessary: 

a) Model Quantization: 

Convert weights and activations from 32-bit floating-point to 8-bit integers. This reduces the model 

size and improves inference speed with minimal accuracy loss. 

b) Pruning: 

Remove less significant connections or neurons from the network to reduce computational 

complexity and memory usage. 



Pruning is a technique used to compress and optimize deep learning models by removing 

unnecessary connections (weights) in the neural network. It's like trimming a tree to remove dead 

branches and make it more efficient. 

How it works: 

1. Identify less important connections: During training, pruning algorithms identify weights 

with relatively small magnitudes (close to zero). These weights contribute less to the overall 

prediction of the model and can be removed without significantly affecting accuracy. 

2. Remove connections (set weights to zero): The identified connections are removed by 

setting their weights to zero, effectively "pruning" them from the network. 

3. Fine-tuning: After pruning, the model is usually fine-tuned for a few epochs to adjust the 

remaining weights and recover any potential loss in accuracy due to the removal of 

connections. 

Pruning and Quantization 

 



 

c) Model Compression: 

Compress the model by reducing redundant weights or using efficient encoding techniques. 

d) Knowledge Distillation: 

Use a smaller "student" model to mimic the behavior of a larger "teacher" model. 

e) Framework-Specific Tools: 

• TensorFlow Lite (TFLite) for Keras models. 

• ONNX (Open Neural Network Exchange) for interoperability. 

• Edge Impulse for low-power devices. 

4. Deployment Workflow 

Step 1: Model Training and Export 

Train the neural network in Python using Keras. Save the trained model in HDF5 or SavedModel 

format. 

from tensorflow.keras.models import load_model 

model = load_model('model.keras') 

model.save('saved_model') 

Step 2: Model Conversion 

Convert the trained model to a format compatible with the target platform, such as TensorFlow Lite 

(TFLite). 

import tensorflow as tf 

converter = tf.lite.TFLiteConverter.from_saved_model('saved_model') 

tflite_model = converter.convert() 

with open('model.tflite', 'wb') as f: 

    f.write(tflite_model) 

 

 



Step 3: Deployment on Platform 

Copy the model to the target device and run it using a lightweight inference engine. For example, 

deploy on Arduino: 

1. Use TensorFlow Lite Micro for Arduino. 

2. Convert and upload the model as a .h file to the Arduino board. 

xxd -i model.tflite > model.h 

3. Include the model in the Arduino sketch and load it for inference using TensorFlow Lite 

Micro. 

#include "model.h" // Include the converted model 

#include <TensorFlowLite.h> // TensorFlow Lite Micro library 

 

// Example setup 

void setup() { 

  Serial.begin(115200); 

  // Load model and allocate memory for inference 

  tflite::MicroInterpreter interpreter(...); 

  interpreter.AllocateTensors(); 

} 

 

void loop() { 

  // Example inference logic 

} 

Step 4: Optimize Runtime Performance 

• Utilize hardware acceleration where possible (e.g., Arduino Portenta H7 with a neural network 

accelerator). 

• Use efficient algorithms for pre-processing and inference. 

• Keep the model architecture simple to ensure compatibility with the microcontroller. 

5. Examples of Low-Cost Deployments 

a) Raspberry Pi: 

Use a Raspberry Pi for edge AI tasks such as image classification. 

• Hardware: Raspberry Pi 4 (4GB RAM). 

• Example: Deploy a MobileNetV2-based model for object detection.  

 Raspberry Pi 5/8GB: 90 EUR 

 



b) NVIDIA Jetson Nano: 

Utilize Jetson Nano for accelerated inference in applications such as robotics or real-time video 

analytics. 

• Hardware: NVIDIA Jetson Nano (128-core Maxwell GPU). 

• Example: Deploy a YOLOv4 model for real-time object detection.  

NVIDIA Jetson Orin Nano 8GB Development Kit,   480 EUR 

 

c) Arduino for Conventional ANNs: 

Deploy simple conventional ANNs on Arduino boards for sensor data processing. 

• Hardware: Arduino Nano 33 BLE Sense. 

• Example: Detect temperature anomalies using a simple ANN model deployed with 

TensorFlow Lite Micro.  

Arduino Nano 33 BLE Sense Rev2   46 EUR 

 

6. Practical Tips and Best Practices 

• Profiling: Use profiling tools to identify bottlenecks. 

• Batch Size: Use smaller batch sizes to fit memory constraints. 

• Lightweight Libraries: Use frameworks tailored for low-cost platforms (e.g., MicroTensor, 

TensorFlow Lite). 

• Testing: Thoroughly test the deployment for latency, accuracy, and stability. 

 

 



7. Conclusion 

Deploying neural networks on low-cost platforms bridges the gap between AI research and real-world 

applications. While these platforms present challenges, careful optimization and appropriate tools 

make them viable for numerous use cases. By leveraging techniques like quantization, pruning, and 

model conversion, developers can ensure efficient deployment on constrained devices. 

8. Further Reading and Resources 

• TensorFlow Lite Documentation: https://www.tensorflow.org/lite 

• Raspberry Pi Official Guide: https://www.raspberrypi.org/documentation 

• Edge Impulse: https://www.edgeimpulse.com 

• Jetson Nano Resources: https://developer.nvidia.com/embedded/jetson-nano 

• Arduino with TensorFlow Lite Micro: https://www.arduino.cc/pro/tutorials/tensorflow-lite 
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