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➢Simple Linear Regression

➢Multiple Linear Regression

➢Polynomial “Linear” Regression
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Regression analysis

❑ In statistical modeling, regression analysis is a set of statistical

processes for estimating the relationships among variables.

❑ It includes many techniques for modeling and analyzing several

variables, when the focus is on the relationship between a

dependent variable and one or more independent variables

(or 'predictors’).

[Regression analysis, Wikipedia, https://en.wikipedia.org/wiki/Regression_analysis] 

More specifically, regression analysis helps one understand how the typical value of 

the dependent variable (or 'criterion variable') changes when any of the independent 

variable is varied, while the other independent variables are held fixed. 

Regression

model
𝑥 ො𝑦

Dependent 

variable

Independent 

variable(s)
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Regression

❑ The regression is an approach to model the relationship 

between a scalar response (dependent variable / regressor) 

and one or more input variables (independent variables).

❑ Regression models (both linear and non-linear) are 

machine-learning models; used for predicting/forecasting.

❑ Regression models are used for predicting a real value 

(salary, stock prices, customer lifetime, sales, house prices). 

If the independent variable is time, then you are forecasting 

future values. Otherwise, the model is predicting present but 

unknown values.

❑ A regression model must learn the correlation between data.
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The case of one input variable (explanatory variable; 

independent variable) is called simple linear regression.

 For more input variables (explanatory variables; independent 

variable), the process is called multiple linear regression.

[7 Types of Regression Techniques you should know!, 

https://www.analyticsvidhya.com/blog/2015/08/comprehensive-guide-regression/]

There are various kinds of regression techniques available to make predictions. 

These techniques are mostly driven by three metrics:

• number of independent variables 

• type of dependent variables

• shape of regression line
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Simple Linear Regression
baxy +=ˆ y – the output / dependent variable (DV)  

x – the input / independent variable (IV)

Red dots – facts; blue line – best fits the facts (the data) – linear regression

Linear regression: a trend line that best fits the data

a – coefficient (slope)

b - constant (intercept)

2

2000

3000

Slope 

1000

x

y

Regression line

intercept – y value where 

the line cuts the Y axis

ො𝑦 = 1000𝑥 + 3000
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Case study – build a simple regression model to 

predict the salary in a company for a new 
employee 

according with years of experience in the 
workforce.

The model will be built based on a set of data

• 30 observations from that company
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Data set

YearsExperience Salary

0.8 3934.3

1 4620.5

1.2 3773.1

1.7 4352.5

1.9 3989.1

2.6 5664.2

2.7 6015

2.9 5444.5

2.9 6444.5

3.4 5718.9

3.6 6321.8

3.7 5579.4

3.7 5695.7

3.8 5708.1

4.2 6111.1

4.6 6793.8

4.8 6602.9

5 8308.8

5.6 8136.3

5.7 9394

6.5 9173.8

6.8 9827.3

7.6 10130.2

7.9 11381.2

8.4 10943.1

8.7 10558.2

9.2 11696.9

9.3 11263.5

10 12239.1

10.2 12187.2

What is the correlation 

between years of 

experience and the 

salary?
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Data set representation
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1.9 3989.1

2.6 5664.2

2.7 6015

2.9 5444.5

2.9 6444.5

3.4 5718.9

3.6 6321.8

3.7 5579.4

3.7 5695.7

3.8 5708.1

4.2 6111.1

4.6 6793.8

4.8 6602.9

5 8308.8

5.6 8136.3

5.7 9394

6.5 9173.8

6.8 9827.3

7.6 10130.2

7.9 11381.2

8.4 10943.1

8.7 10558.2

9.2 11696.9

9.3 11263.5

10 12239.1

10.2 12187.2
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Verify on the dataset

ො𝑦 = 1000𝑥 + 3000

YearsExperience Salary

0.8 3934.3

1 4620.5

1.2 3773.1

1.7 4352.5

1.9 3989.1

2.6 5664.2

2.7 6015

2.9 5444.5

2.9 6444.5

3.4 5718.9

3.6 6321.8

3.7 5579.4

3.7 5695.7

3.8 5708.1

4.2 6111.1

4.6 6793.8

4.8 6602.9

5 8308.8

5.6 8136.3

5.7 9394

6.5 9173.8

6.8 9827.3

7.6 10130.2

7.9 11381.2

8.4 10943.1

8.7 10558.2

9.2 11696.9

9.3 11263.5

10 12239.1

10.2 12187.2

𝑥 = 5, 𝑦 = 8308.8

ො𝑦 = 1000 ∙ 5 + 3000 = 8000

ෝ𝑦 − 𝑦 = 8308.8 - 8000 = 308.8

Using the regression model 
(for new inputs)

Determine the Salary (dependent variable) for a new 

value of  Years Experience (independent variable)  

𝑥 = 9
ො𝑦 = 1000 ∙ 9 + 3000 = 12000

Data 

point

Predicted value

Error
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Quality of regression

In the context of machine learning, the term "error" (singular) means the 

difference between predicted and target values, 

and the term "residual(s)" is practically almost never used.

Errors and residuals

In statistics and optimization, errors and residuals are two closely related and easily confused 

measures of the deviation of an observed value of an element of a statistical sample from its 

"theoretical value". [https://en.wikipedia.org/wiki/Errors_and_residuals]

The residual of an observed value is the difference between the observed value and 

the estimated value of the quantity of interest. Residuals are the difference between any data 

point and the regression line

In a linear regression context, residuals applies to the dataset (training, test, validation):

                             𝒚 − ෝ𝒚 .          The residuals are observable.

The error (or disturbance) of an observed value is the deviation of the observed value from 

the (unobservable) true value of a quantity of interest. 

In a linear regression context, error refers to the results in the model utilization phase.     

(true value – predicted value) 𝒚𝒕𝒓𝒖𝒆 - ෝ𝒚.  Because we really don’t know the true value, the 

error is unknown.

𝒚 - target (ground truth, original, observed) ෝ𝒚 -  predicted  (estimated value)

𝒆𝒓𝒓𝒐𝒓 =  ෝ𝒚 − 𝒚
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Errors

Error

Squared error 

Mean squared-error

Root mean squared-error

ො𝑦(𝑖) − 𝑦(𝑖)

1

𝑚


𝑖=1

𝑚

ො𝑦 𝑖 − 𝑦 𝑖 2

1

𝑚


𝑖=1

𝑚

ො𝑦 𝑖 − 𝑦 𝑖 2

For a dataset with m examples: 𝑦(𝑖) denotes the ith example  (the target)

                                                 (the prediction)  ො𝑦(𝑖)

ො𝑦 𝑖 − 𝑦 𝑖 2
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Ordinary Least Square

We want to build a simple linear regression model 

How can the model parameters be estimated (calculated)?

ො𝑦 = 𝑎𝑥 + 𝑏

𝑎 =?  𝑏 =?

Ordinary Least Squares (OLS) is a method used to estimate the 

parameters (coefficients) of a linear regression model.

The goal of OLS is to find the best-fitting line through the data 

points by minimizing the sum of the squared errors between the 

values predicted by the linear model and the target values



Regression 

G. Oltean 

Ordinary Least Square

The sum of the squares of the errors is used instead of the absolute values of the 

error because this allows the residuals to be treated as a continuous differentiable

quantity. 

Outlying points can have a disproportionate effect on the fit, a property which

may or may not be desirable depending on the problem at hand. 

to be minimized



𝑖=1

𝑛

( ො𝑦 𝑖 − 𝑦 𝑖 )2

Sum of the squares error



Regression 

G. Oltean 

Coefficient of determination  R2    

The coefficient of determination, commonly denoted as R2  (R squared) is a 

statistical measure used to assess how well a linear regression model 

explains the variability in the dependent variable. 

In simpler terms, R2 tells us how much of the variation in the outcome 

(dependent variable) is explained by the predictor variables (independent 

variables) in the model.

R2 values range from 0 to 1:

• R2 = 1: The model perfectly explains all the variation in the dependent 

variable.

• R2 =0: The model explains none of the variation (i.e., the model's 

predictions are no better than the mean of the data).

• Closer to 1: The model explains a large proportion of the variation in 

the dependent variable.

• Closer to 0: The model explains very little of the variation.
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Coefficient of determination  R2    

Interpretation:

• R2 represents the percentage of the total variation in the dependent 

variable that can be explained by the independent variables in the model.

• For example, if R2 = 0.85, this means that 85% of the variation in the 

outcome is explained by the predictors, while the remaining 15% is due 

to factors not included in the model (or noise).

Total sum of squares 

Mean of the data 

m

m

Residual sum of squares 

m
m
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Python code for linear regression
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Results

MSE = 368529.5

RMSE = 607.1

R2 = 0.9382

Slope = 934.59424431

Intercept = 2961.9974976967906

Salary = 935 * Years + 2962 

Training 

set
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Results

[3773.1, 12239.1, 5708.1, 6321.8, 11696.9, 10943.1,11263.5, 5579.4, 8308.8, 10130.2]

pred

test

[4083.5, 12307.9, 6513.5, 6326.5, 11560.3, 10812.6,11653.7, 6420.0, 7635.0, 10064.9]

[ 310.4,    68.8,      805.4,     4.7,     -136.6,    -130.5,   390.2,    840.6,   -673.8,    -65.2]
pred-

test

MSE = 210260.4

RMSE = 458.5

R2 = 0.9749

Test 

set
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Results
All data

Training data

Test data

Linear regression model
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Regression in Excel
Data

Data Analysis
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Regression in Excel - 
Results
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Regression 
in Excel
 Results
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Exercise

Using the OLS 

linear regression to 

model the y(x) 

relation, the result is:

slope = -10.8;  

intercept = 287. 

a) What is the equation of the linear regression model?

b) Plot the linear model on the same diagram.

c) What are the errors?

d) What is the interpretation of the following error measures:

 MSE = 218.2;  RMSE = 14.77;  R2 = 0.8274

Excel exercise
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Multiple Linear Regression

y – dependent variable (DV) / regressor

x1,  x2,  x3, ...  , xn   -  independent variables (IVs) / predictors

a1,  a2,  a3, ...  , an - coefficients

b  - constant

5 methods of building multiple linear regression models:

1. All–in

2. Backward Elimination 

3. Forward Selection                  Stepwise regression

4. Bidirectional Elimination

5. Score Comparison

[Kirill Ermenko, Building a Model (Step-By-Step), Data Science Training, 
https://www.google.ro/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwi50pnIoZfeAhWRKCwKHdLKBIsQFjAAegQICxAC&url=https%3

A%2F%2Fwww.superdatascience.com%2Fwp-content%2Fuploads%2F2017%2F02%2FStep-by-step-Blueprints-For-Building-

Models.pdf&usg=AOvVaw0C8l04IYGkS6i23PeeLrqg]

bxaxaxay nn +++= ...ˆ
2211
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Usually, we are using all dependent variables; but is this 

the optimal model? 

Some independent variables (IV) can be highly statistically 

significant with great impact (effect) on the DV (dependent 

variable)

Some IVs are not statistically significant at all – should be 

removed from the model.

Find a team of optimal IVs, where each IV of the team has 

great impact on the DV (statistically significant)

Multiple Linear Regression - Backward elimination
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Polinomial „linear” regression
One independent variable x

Can be seen as a special 

case of a multiple linear 

regression – from the 

point of view of  ai 

coefficient

bxaxaxay n

n +++= ...ˆ 2

21

𝐴 = 𝜋𝑟2

𝑥, 𝑥2 , ⋯ , 𝑥𝑛

independent 

variables
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In statistics, polynomial regression is a form of regression analysis in 

which the relationship between the independent variable x and the 

dependent variable y is modelled as an mth degree polynomial in x.

Polynomial regression fits a nonlinear relationship between the value of 

x and the corresponding conditional mean of y, denoted E(y |x). 

Although polynomial regression fits a nonlinear model to the data,           

as a statistical estimation problem it is linear,                                       

in the sense that the regression function E(y | x) is linear in the unknown 

parameters (ao, a1, ..., am) that are estimated from the data. 

For this reason, polynomial regression is considered to be a special case 

of multiple linear regression [https://en.wikipedia.org/wiki/Polynomial_regression ]

A linear combination from the coefficient point a view. 

In fact, the problem is to determine the coefficients.
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Data set: Position- salary

What is the best polynomial model Position (Level) – Salary?

Position Level Salary

Business Analyst 1 3500

Junior Consultant 2 3900

Senior Consultant 3 4500

Manager 4 5800

Country Manager 5 8000

Region Manager 6 11000

Partner 7 15000

Senior Partner 8 23000

C-level 9 40000

CEO 10 75000
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1st  order vs 3rd order polynomial model

1st :       Salary = - 15006 + 6178 Level

3rd :      Salary = - 7747 + 12408 Level – 3412 Level2  + 297 Level3
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Comparison – different polynomial model

Order 1st (linear) 2nd 3rd 5th 

R2 0.6775504 0.9292263 0.9878567 0.9999947
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Important aspects
❑ While there might be a temptation to fit a higher degree 

polynomial to get lower error, this can result in over-fitting. 

❑ Always plot the relationships to see the fit and focus on making 
sure that the curve fits the nature of the problem

❑ Look out for curve towards the ends and see whether those shapes and 

trends make sense. Higher polynomials can end up producing weird 

results on extrapolation.

[7 Types of Regression Techniques you should know!, 

https://www.analyticsvidhya.com/blog/2015/08/comprehensive-guide-regression/]
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ExerciseFor the dataset presented in the next 

plot, a linear regression model         

ෝ𝑦𝑙 = 𝑎𝑥 + 𝑏, 𝑏 = 175, 𝑎 =  −8 ,  and 

a quadratic regression model           

ෞ𝑦𝑞 = 𝑎1𝑥 + 𝑎2𝑥2 + 𝑏                       

b = 470; 𝑎1 = −56; 𝑎2 = 1.9 , were 

developed.

a) 0.5p Which is the equation of the 

linear model? Plot the regression line.

b) 0.5p Which is the equation of the 

quadratic model? Plot the regression 

curve.

c) 1p Which is the predicted value of 

the dependent variable y for the 

independent variable x = 12 for both 

models. Plot this data points. 

d) 1p Which of the two models is more 

accurate? Why? Excel exercise
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