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Picture this. 
You want to be the best basketball player in the world. That means you want to 
score every time you shoot, have perfect passes, and always be in the right position 
at the right time for your teammates to pass to you. 

Basically, you want to reduce as much error as possible. So, what to do?
You train. Much like perfecting basketball, gradient descent is an algorithm meant to 
minimize a certain cost function (room for error), so that the output is the most 
accurate it can be.

But before you start training, you need to have all your equipment. Who can play 
basketball without a ball? So, you need to know the function that you’re trying to 
minimize (the cost function), its derivatives, and its current inputs, weight, and bias 
so you can get what you want: the most accurate output possible. 

GDA is an algorithm used in almost every ML model. 
The Gradient Descent serves to find the minimum of the cost function — basically the
lowest point or deepest valley.

Gradient Descent Algorithm (GDA)

Gradient descrescator; Gradient descendent; Coborârea gradientului; 

Coborârea pe gradient; Gradient de coborâre; Coborârea pantei
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Gradient Descent Algorithm (GDA)  - Analogy
A person is stuck in the mountains and is trying to get down (i.e. trying to find the global minimum). 

There is heavy fog such that visibility is extremely low. Therefore, the path down the mountain is not 

visible, so they must use local information to find the minimum. 

They can use the method of gradient descent, which involves looking at the steepness of the hill at their 

current position, then proceeding in the direction with the steepest descent (i.e. downhill). 

If they were trying to find the top of the mountain (i.e. the maximum), then they would proceed in the 

direction of steepest ascent (i.e. uphill). 

Using this method, they would eventually find their way down the mountain or possibly get stuck in some 

hole (i.e., local minimum or saddle point), like a mountain lake. 

However, assume also that the steepness of the hill is not immediately obvious with simple observation, 

but rather it requires a sophisticated instrument to measure, which the person happens to have now. It takes 

quite some time to measure the steepness of the hill with the instrument, thus they should minimize their 

use of the instrument if they wanted to get down the mountain before sunset. The difficulty then is 

choosing the frequency at which they should measure the steepness of the hill so not to go off track.

In this analogy, the person represents the algorithm, and the path taken down the mountain represents the 

sequence of parameter settings that the algorithm will explore. 

The steepness of the hill represents the slope of the error surface at that point. The instrument used to 

measure steepness is differentiation (the slope of the error surface can be calculated by taking the 

derivative of the squared error function at that point). The direction they choose to travel in aligns with the 

gradient of the error surface at that point. The amount of time they travel before taking another 

measurement is the learning rate of the algorithm.

[https://en.wikipedia.org/wiki/Gradient_descent#An_analogy_for_understanding_gradient_descent]
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Simple Linear Regression - revisited

baxy +=ˆ
Red dots – facts; blue line – best fits the facts (the data) – linear regression

Linear regression: a trend line that best fits the data
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How would the computer 

know the right value 

of a and b for drawing 

the regression line with 

the minimum error?

Gradient Descent 

Algorithm (GDA)

ො𝑦 = 1000𝑥 + 3000
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Gradient descent algorithm
❖  A trial-and-error method

❖  Iteratively give us different values of a and b to try

➢  In each iteration, 

➢ draw a regression line using a and b  

➢ calculate the error for this model

➢ adjust a and b to minimize the error 

➢  Continue until we get a and b such that the error is minimum.
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Step 1: Start with random 

values of a and b 
Step 2: Adjust a and b to 

reduce errors 

Step 3: Repeat until converge to 
best approximation
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Gradient descent 
algorithm

Algorithm evolution:

initial guess            intermediate solution           final-best approximation

Gradient descent is not limited to regression problems only. 

It is an optimization algorithm which can be applied to any ML 

problem in general – including neuronal networks, deep learning
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Cost Function
A Cost Function / Loss Function evaluate the performance of any machine 

learning algorithm. 

❑ Loss function computes the error for a single training example 

❑ Cost function usually is the average of the loss functions for all the 

training examples. 

A cost function basically tells us ‘ how good’ our model is at making 

predictions for given values of a and b

https://towardsdatascience.com/understanding-the-

mathematics-behind-gradient-descent-dde5dc9be06e 

Cost function J:  Mean squared-error

reference values (ground truth, target, original, observed)

predicted values (estimated value)

𝐽 =
1

𝑚


𝑖=1

𝑚

ො𝑦 𝑖 − 𝑦 𝑖 2

ො𝑦(𝑖)

𝑦(𝑖) 

ith example,  i = 1, … , 𝑚

https://towardsdatascience.com/understanding-the-mathematics-behind-gradient-descent-dde5dc9be06e
https://towardsdatascience.com/understanding-the-mathematics-behind-gradient-descent-dde5dc9be06e
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Minimizing the cost function

we want those a and b which give the smallest possible error. 

The cost function J  can be seen in fact as a simple squared function F: 

𝑭 = 𝒙𝟐

𝐽 =
1

𝑚


𝑖=1

𝑚

ො𝑦 𝑖 − 𝑦 𝑖 2
=

1

𝑚


𝑖=1

𝑚

𝑒(𝑖) 2

Currently: the ‘green’ dot. 

The aim is to reach the minimum (of the 

cost function) i.e the ‘red’ dot, but you 

don’t know where it is (can’t see it)

Possible action: 

upward / downward

small / big step ?
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Gradient Descent Algorithm makes these decisions (direction, step size) 

efficiently and effectively with the use of derivatives.
 

Derivative: the slope of the graph at a particular point.

The tangent gives a sense of the steepness of the slope 

The slope at the brown point is less steep than that at the green point; It will take smaller steps 

to reach the minimum from the brown point than from the green point.
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https://en.wikipedia.org/wiki/Gradient_descent 

The F function is assumed to be defined 

on the plane, and that its graph has a bowl 

shape. 

The blue curves are the contour lines, that 

is, the regions on which the value of F is 

constant. 

A red arrow originating at a point shows 

the direction of the negative gradient at 

that point. 

The (negative) gradient at a point is 

orthogonal to the contour line going 

through that point. 

Gradient descent leads to the bottom of 

the bowl, that is, to the point where the 

value of the function F is minimal.

Alternative view of GDA dynamic

https://en.wikipedia.org/wiki/Gradient_descent
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BGD vs. SGD

The summation part is important, especially with the concept 

of batch gradient descent (BGD) vs. stochastic gradient 

descent (SGD). 

In Batch Gradient Descent, all the training data 

is taken into consideration to take a single step (one training 

epoch). We take the average of the gradients of all the training 

examples and then use that mean gradient to update our 

parameters. 

BGD is great for convex or relatively smooth error manifolds. 

In this case, we move somewhat directly towards an optimum 

solution.

The graph of cost vs epochs is also quite smooth because we 

are averaging over all the gradients of training data for a single 

step. The cost keeps on decreasing over the epochs.

[https://towardsdatascience.com/batch-mini-batch-stochastic-gradient-descent-7a62ecba642a]

Cost function

Path taken by BGD

[https://www.geeksforgeeks.org/ml-

stochastic-gradient-descent-

sgd/?ref=rp]

𝐽 =
1

𝑚


𝑖=1

𝑚

ො𝑦 𝑖 − 𝑦 𝑖 2
=

1

𝑚


𝑖=1

𝑚

𝑒(𝑖) 2
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BGD vs. SGD – cont.
In BGD we were considering all the examples for every step 

of Gradient Descent. But what if our dataset is very huge?

Deep learning models crave for data. 

The more the data the more chances of a model to be good. 

Suppose our dataset has 5 million examples, then just to take 

one step the model will have to calculate the gradients of all 

the 5 million examples. This does not seem an efficient way. 

To tackle this problem, we have 

Stochastic Gradient Descent. 

In SGD, we consider just one example at a time to take a 

single step (one training epoch). 
[https://towardsdatascience.com/batch-mini-batch-stochastic-gradient-descent-

7a62ecba642a]

The example is randomly shuffled and selected for 

performing the training epoch.

In SGD, since only one example from the dataset is chosen at 

random for each iteration, the path taken by the algorithm to 

reach the minima is usually noisier than the one for the BGD. 

But that doesn’t matter all that much because the path taken 

by the algorithm does not matter, as long as we reach the 

minima and with significantly shorter training time.

Path taken by SGD
[https://www.geeksforgeeks.org/ml-stochastic-

gradient-descent-sgd/?ref=rp]

One thing to be noted is that, as 

SGD is generally noisier than 

BGD, it usually took a higher 

number of iterations to reach the 

minima, because of its 

randomness in its descent. Even 

though it requires a higher 

number of iterations to reach the 

minima than BGD, it is still 

computationally much less 

expensive than BGD.
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BGD vs. SGD – cont.

BGD can be used for smoother curves. 

SGD can be used when the dataset is large. 

BGD converges directly to minima. 

SGD converges faster for larger datasets. 

But, since in SGD we use only one example at a time, we cannot implement the vectorized 

implementation on it. This can slow down the computations. To tackle this problem,    

a mixture of BGD and SGD is used:

Mini Batch Gradient Descent

Neither we use all the dataset all at once nor we use the single example at a time. 

We use a batch of a fixed number of training examples which is less than the actual dataset and 

call it a mini-batch. Doing this helps us achieve the advantages of both BGD and SGD.

We take the average of the gradients of the training examples in the mini-batch and then use that 

mean gradient to update the parameters. 

Just like SGD, the average cost over the epochs in mini-batch gradient descent fluctuates 

because we are averaging a small number of examples at a time.

So, when we are using the mini-batch gradient descent we are updating our parameters 

frequently as well as we can use vectorized implementation for faster computations

[https://towardsdatascience.com/batch-mini-batch-stochastic-gradient-descent-7a62ecba642a]
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ො𝑦 = 𝑎𝑥 + 𝑏 𝑒 = 𝑒(𝑎, 𝑏) e is a function of a and b

𝐽 = 𝐽(𝑒) = 𝐽(𝑎, 𝑏) J  is a function of a and b

How does F depend on a and b, in general, but also, in each particular point? 

For simplicity, let’s get rid of the summation sign and division by m, 

and use only the simplest version of the equivalent loss function F

𝐹 = 𝑒2 𝐹 = 𝐹(𝑎, 𝑏) F is a function of a and b

𝜕𝐹

𝜕𝑎
=

𝜕 𝑒2

𝜕𝑎
= 2𝑒

𝜕𝑒

𝜕𝑎
 

𝜕𝐹

𝜕𝑏
=

𝜕 𝑒2

𝜕𝑏
= 2𝑒

𝜕𝑒

𝜕𝑏
 

Chain 

rule 

applied

Calculate partial derivatives of F w.r.t. a and b 

Gradient Descent 
Algorithm (GDA)
Just to keep things simple, we will assume that we are looking at each error 

one at a time (SGD like) – algorithm intuition

𝐽 =
1

𝑚


𝑖=1

𝑚

ො𝑦 𝑖 − 𝑦 𝑖 2
=

1

𝑚


𝑖=1

𝑚

𝑒(𝑖) 2
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➢Chain rule

If a variable z depends on the variable y, which itself depends on the 

variable x (i.e., y and z are dependent variables), then z, via the 

intermediate variable of y, depends on x as well. 

𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥

The chain rule states that:

𝑧 𝑦 x
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𝜕𝐹

𝜕𝑎
=

𝜕 𝑒2

𝜕𝑎
= 2𝑒

𝜕𝑒

𝜕𝑎
 

𝜕𝐹

𝜕𝑏
=

𝜕 𝑒2

𝜕𝑏
= 2𝑒

𝜕𝑒

𝜕𝑏
 

𝑒 = ො𝑦 − 𝑦

ො𝑦 = 𝑎𝑥 + 𝑏

𝑒 = 𝑎𝑥 + 𝑏 − 𝑦
𝜕𝑒

𝜕𝑎
= 𝑥

𝜕𝑒

𝜕𝑏
= 1

𝜕𝐹

𝜕𝑎
= 2𝑒𝑥

𝜕𝐹

𝜕𝑏
= 2𝑒

The variation of F w.r.t. a

• e

• x 

The variation of F w.r.t. b

•  e
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𝜕𝐹

𝜕𝑎
= 2𝑒𝑥

𝜕𝐹

𝜕𝑏
= 2𝑒

Our cost (objective) function

𝐹 = 𝑒2 = 𝑎𝑥 + 𝑏 − 𝑦 2

will be minimized by updating the values for a and b

✓ η - learning rate (constant) – controls the step size to reach the 

minimum of the cost function 

a ≔ 𝑎 − 𝜂𝑒𝑥

𝑏 ≔ 𝑏 − 𝜂𝑒
𝑒 = ො𝑦 − 𝑦 = 𝑎𝑥 + 𝑏 − 𝑦

𝒃 ≔ 𝒃 − 𝜼
𝝏𝑭

𝝏𝒃

error errorinput

𝒂 ≔ 𝒂 − 𝜼
𝝏𝑭

𝝏𝒂
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One can cover more 

area with larger 

steps/higher learning 

rate but are at the risk 

of overshooting the 

minima and diverge. 

For linear regression ො𝑦 = 𝑎𝑥 + 𝑏

Gradient descent is applied as

https://medium.com/code-heroku/gradient-descent-for-machine-learning-3d871fa48b4c 

𝒃 ≔ 𝒃 − 𝜼
𝝏𝑭

𝝏𝒃
= 𝒃 − 𝜼e

On the other hand, 

small steps/smaller 

learning rates will 

consume a lot of 

time to reach the 

lowest point.

𝒂 ≔ 𝒂 − 𝜼
𝝏𝑭

𝝏𝒂
= 𝒂 − 𝜼𝒆𝒙

https://medium.com/code-heroku/gradient-descent-for-machine-learning-3d871fa48b4c
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GDA for LR- overview

1) A random point is chosen initially by choosing random values of a and b.

2) Direction of the slope of that point is found by finding 
𝜕𝐹

𝜕𝑎
 and 

𝜕𝐹

𝜕𝑏
.

3) Since we want to move in the opposite direction of the slope, we will 

multiply -1 with both 
𝜕𝐹

𝜕𝑎
 and 

𝜕𝐹

𝜕𝑏
 .

4) Since 
𝜕𝐹

𝜕𝑎
 and 

𝜕𝐹

𝜕𝑏
 gives only the direction, we need to multiply both with 

the learning rate (η) to specify the step size of each epoch.

5) Update the values of a and b such that the error (cost function) is 

reduced.

6) Repeat steps 2 to 5 until we converge at the minimum point of the cost 

function
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Case study – Python implementation
Problem: 

Predict the score of a student based on number of hours studied

Data set: 25examples

 Hours - Scores

𝑆𝑐𝑜𝑟𝑒𝑠 = 𝑎 ∙ 𝐻𝑜𝑢𝑟𝑠 + 𝑏

𝑎 =?  𝑏 =?
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Python implementation

https://colab.research.google.com/drive/14z1Xc6x-

oXANp5Y2fLVq_I5SuHwmrPcB?usp=sharing 

Colab notebook

https://colab.research.google.com/drive/14z1Xc6x-oXANp5Y2fLVq_I5SuHwmrPcB?usp=sharing
https://colab.research.google.com/drive/14z1Xc6x-oXANp5Y2fLVq_I5SuHwmrPcB?usp=sharing
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Results for BGD eta = 0.005 # learning rate
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Results for SGD eta = 0.005 # learning rate
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Results:  BGD vs. SGD

BGD execution time for 1000 epochs:  

0:00:01.555489 [s]

SGD execution time for 1000 epochs:   

0:00:00.801469 [s]

For the data set of only 25 examples
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Synthesis
ො𝑦 = 𝑎𝑥 + 𝑏

where
ො𝑦  is the predicted value,    
a is the slope (weight),    b  is the intercept (bias).

The objective of linear regression is to find the parameters a 
and b that minimize a cost function, typically the Mean 
Squared Error (MSE), defined as

𝐽(𝑎, 𝑏) =
1

𝑚


𝑖=1

𝑚

ො𝑦 𝑖 − 𝑦 𝑖 2

ො𝑦 𝑖   is the i-th predicted value,   
𝑦 𝑖   is the i-th target value,  
m  is the number of examples (size of the dataset).
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Synthesis
At each iteration the parameters a and b are updated:

𝑎: = 𝑎 − 𝜂
𝜕𝐽

𝜕𝑎

𝑏: = 𝑏 − 𝜂
𝜕𝐽

𝜕𝑏

                     
𝑎 ≔ 𝑎 − 𝜂𝑒𝑥
𝑏: = 𝑏 − 𝜂𝑒

where 
𝜂 is the learning rate, which controls the size of the steps we 
take toward the minimum of the cost function 
𝑒 = ො𝑦 − 𝑦 is the error



Gradient Descent for Machine Learning 

G. Oltean 

Gradient Descent Algorithm Steps for Linear Regression

1. Initialize the parameters  a and b with some random 
values. 

2. Compute the predictions  ො𝑦 𝑖 = 𝑎𝑥(𝑖) + 𝑏
3. Compute the cost function J (a, b),
4. Update the parameters  a and b  using the gradient 

descent update rules.
5. Repeat steps 2-4 until the cost function converges (i.e., 

changes very little between iterations) or until a fixed 
number of iterations is reached.

Synthesis
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Synthesis

𝑒𝑥 =
1

𝑚


𝑖=1

𝑚

( ො𝑦 𝑖 −𝑦 𝑖 )𝑥 𝑖

𝑒 =
1

𝑚


𝑖=1

𝑚

( ො𝑦 𝑖 −𝑦 𝑖 )

𝑎: = 𝑎 − 𝜂𝑒𝑥 = 𝑎 − 𝜂
1

𝑚


𝑖=1

𝑚

( ො𝑦 𝑖 −𝑦 𝑖 )𝑥 𝑖

𝑏 ≔ 𝑏 − 𝜂𝑒 = 𝑏 − 𝜂
1

𝑚


𝑖=1

𝑚

( ො𝑦 𝑖 −𝑦 𝑖 )

For BGD (batch gradient descent)

Uses the entire dataset for every update (in each training epoch)
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Synthesis
For SGD (Stochastic gradient descent)

In each training epoch, only one training example 𝑥(𝑗), 𝑦(𝑗)  , 
randomly selected from the training set is used to update the 
parameters.

𝑎 ≔ 𝑎 − 𝜂𝑒𝑥 = 𝑎 − 𝜂( ො𝑦 𝑗 −𝑦 𝑗 )𝑥 𝑗

𝑏 ≔ 𝑏 − 𝜂𝑒 = 𝑏 − 𝜂( ො𝑦 𝑖 −𝑦 𝑖 )
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Problem

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑎 ∙ 𝐼𝑛𝑝𝑢𝑡 + 𝑏

𝑎 =?  𝑏 =?

a) Perform the operations for the 1st training epoch of GDA considering 

the starting point  a = 0, b = 0, η = 0.0005, in both cases: BGD and SGD.

b) What are the values of the cost function (MSE) in the starting point 

and after the 1st training epoch in both cases?
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Solution BGD
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Solution SGD
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