
Gradient Descent for Machine Learning

G. Oltean

Gradient Descent for
Machine Learning

https://medium.com/code-heroku/gradient-descent-for-machine-learning-3d871fa48b4c

❑ Gradient descent

❑ Gradient descent algorithm - machine learning

❑ Gradient descent algorithm – some math

❑ Gradient descent algorithm – implementation in Python

❑ Illustration

https://medium.com/code-heroku/gradient-descent-for-machine-learning-3d871fa48b4c

Gradient Descent for Machine Learning

G. Oltean 2 / 28

2 / 20

Picture this.
You want to be the best basketball player in the world. That means you want to
score every time you shoot, have perfect passes, and always be in the right position
at the right time for your teammates to pass to you.

Basically, you want to reduce as much error as possible. So, what to do?
You train. Much like perfecting basketball, gradient descent is an algorithm meant to
minimize a certain cost function (room for error), so that the output is the most
accurate it can be.

But before you start training, you need to have all your equipment. Who can play
basketball without a ball? So, you need to know the function that you’re trying to
minimize (the cost function), its derivatives, and its current inputs, weight, and bias
so you can get what you want: the most accurate output possible.

GDA is an algorithm used in almost every ML model.
The Gradient Descent serves to find the minimum of the cost function — basically the
lowest point or deepest valley.

Gradient Descent Algorithm (GDA)

Gradient descrescator; Gradient descendent; Coborârea gradientului;

Coborârea pe gradient; Gradient de coborâre; Coborârea pantei

Gradient Descent for Machine Learning

G. Oltean 3 / 28

Gradient Descent Algorithm (GDA) - Analogy
A person is stuck in the mountains and is trying to get down (i.e. trying to find the global minimum).

There is heavy fog such that visibility is extremely low. Therefore, the path down the mountain is not

visible, so they must use local information to find the minimum.

They can use the method of gradient descent, which involves looking at the steepness of the hill at their

current position, then proceeding in the direction with the steepest descent (i.e. downhill).

If they were trying to find the top of the mountain (i.e. the maximum), then they would proceed in the

direction of steepest ascent (i.e. uphill).

Using this method, they would eventually find their way down the mountain or possibly get stuck in some

hole (i.e., local minimum or saddle point), like a mountain lake.

However, assume also that the steepness of the hill is not immediately obvious with simple observation,

but rather it requires a sophisticated instrument to measure, which the person happens to have now. It takes

quite some time to measure the steepness of the hill with the instrument, thus they should minimize their

use of the instrument if they wanted to get down the mountain before sunset. The difficulty then is

choosing the frequency at which they should measure the steepness of the hill so not to go off track.

In this analogy, the person represents the algorithm, and the path taken down the mountain represents the

sequence of parameter settings that the algorithm will explore.

The steepness of the hill represents the slope of the error surface at that point. The instrument used to

measure steepness is differentiation (the slope of the error surface can be calculated by taking the

derivative of the squared error function at that point). The direction they choose to travel in aligns with the

gradient of the error surface at that point. The amount of time they travel before taking another

measurement is the learning rate of the algorithm.

[https://en.wikipedia.org/wiki/Gradient_descent#An_analogy_for_understanding_gradient_descent]

Gradient Descent for Machine Learning

G. Oltean

Simple Linear Regression - revisited

baxy +=ˆ
Red dots – facts; blue line – best fits the facts (the data) – linear regression

Linear regression: a trend line that best fits the data

2

2000

3000

Slope

1000

x

y

How would the computer

know the right value

of a and b for drawing

the regression line with

the minimum error?

Gradient Descent

Algorithm (GDA)

ො𝑦 = 1000𝑥 + 3000

Gradient Descent for Machine Learning

G. Oltean

Gradient descent algorithm
❖ A trial-and-error method

❖ Iteratively give us different values of a and b to try

➢ In each iteration,

➢ draw a regression line using a and b

➢ calculate the error for this model

➢ adjust a and b to minimize the error

➢ Continue until we get a and b such that the error is minimum.

Gradient Descent for Machine Learning

G. Oltean

Step 1: Start with random

values of a and b
Step 2: Adjust a and b to

reduce errors

Step 3: Repeat until converge to
best approximation

Gradient Descent for Machine Learning

G. Oltean

Gradient descent
algorithm

Algorithm evolution:

initial guess intermediate solution final-best approximation

Gradient descent is not limited to regression problems only.

It is an optimization algorithm which can be applied to any ML

problem in general – including neuronal networks, deep learning

Gradient Descent for Machine Learning

G. Oltean

Cost Function
A Cost Function / Loss Function evaluate the performance of any machine

learning algorithm.

❑ Loss function computes the error for a single training example

❑ Cost function usually is the average of the loss functions for all the

training examples.

A cost function basically tells us ‘ how good’ our model is at making

predictions for given values of a and b

https://towardsdatascience.com/understanding-the-

mathematics-behind-gradient-descent-dde5dc9be06e

Cost function J: Mean squared-error

reference values (ground truth, target, original, observed)

predicted values (estimated value)

𝐽 =
1

𝑚

𝑖=1

𝑚

ො𝑦 𝑖 − 𝑦 𝑖 2

ො𝑦(𝑖)

𝑦(𝑖)

ith example, i = 1, … , 𝑚

https://towardsdatascience.com/understanding-the-mathematics-behind-gradient-descent-dde5dc9be06e
https://towardsdatascience.com/understanding-the-mathematics-behind-gradient-descent-dde5dc9be06e

Gradient Descent for Machine Learning

G. Oltean

Minimizing the cost function

we want those a and b which give the smallest possible error.

The cost function J can be seen in fact as a simple squared function F:

𝑭 = 𝒙𝟐

𝐽 =
1

𝑚

𝑖=1

𝑚

ො𝑦 𝑖 − 𝑦 𝑖 2
=

1

𝑚

𝑖=1

𝑚

𝑒(𝑖) 2

Currently: the ‘green’ dot.

The aim is to reach the minimum (of the

cost function) i.e the ‘red’ dot, but you

don’t know where it is (can’t see it)

Possible action:

upward / downward

small / big step ?

Gradient Descent for Machine Learning

G. Oltean

Gradient Descent Algorithm makes these decisions (direction, step size)

efficiently and effectively with the use of derivatives.

Derivative: the slope of the graph at a particular point.

The tangent gives a sense of the steepness of the slope

The slope at the brown point is less steep than that at the green point; It will take smaller steps

to reach the minimum from the brown point than from the green point.

Gradient Descent for Machine Learning

G. Oltean

https://en.wikipedia.org/wiki/Gradient_descent

The F function is assumed to be defined

on the plane, and that its graph has a bowl

shape.

The blue curves are the contour lines, that

is, the regions on which the value of F is

constant.

A red arrow originating at a point shows

the direction of the negative gradient at

that point.

The (negative) gradient at a point is

orthogonal to the contour line going

through that point.

Gradient descent leads to the bottom of

the bowl, that is, to the point where the

value of the function F is minimal.

Alternative view of GDA dynamic

https://en.wikipedia.org/wiki/Gradient_descent

Gradient Descent for Machine Learning

G. Oltean

BGD vs. SGD

The summation part is important, especially with the concept

of batch gradient descent (BGD) vs. stochastic gradient

descent (SGD).

In Batch Gradient Descent, all the training data

is taken into consideration to take a single step (one training

epoch). We take the average of the gradients of all the training

examples and then use that mean gradient to update our

parameters.

BGD is great for convex or relatively smooth error manifolds.

In this case, we move somewhat directly towards an optimum

solution.

The graph of cost vs epochs is also quite smooth because we

are averaging over all the gradients of training data for a single

step. The cost keeps on decreasing over the epochs.

[https://towardsdatascience.com/batch-mini-batch-stochastic-gradient-descent-7a62ecba642a]

Cost function

Path taken by BGD

[https://www.geeksforgeeks.org/ml-

stochastic-gradient-descent-

sgd/?ref=rp]

𝐽 =
1

𝑚

𝑖=1

𝑚

ො𝑦 𝑖 − 𝑦 𝑖 2
=

1

𝑚

𝑖=1

𝑚

𝑒(𝑖) 2

Gradient Descent for Machine Learning

G. Oltean

BGD vs. SGD – cont.
In BGD we were considering all the examples for every step

of Gradient Descent. But what if our dataset is very huge?

Deep learning models crave for data.

The more the data the more chances of a model to be good.

Suppose our dataset has 5 million examples, then just to take

one step the model will have to calculate the gradients of all

the 5 million examples. This does not seem an efficient way.

To tackle this problem, we have

Stochastic Gradient Descent.

In SGD, we consider just one example at a time to take a

single step (one training epoch).
[https://towardsdatascience.com/batch-mini-batch-stochastic-gradient-descent-

7a62ecba642a]

The example is randomly shuffled and selected for

performing the training epoch.

In SGD, since only one example from the dataset is chosen at

random for each iteration, the path taken by the algorithm to

reach the minima is usually noisier than the one for the BGD.

But that doesn’t matter all that much because the path taken

by the algorithm does not matter, as long as we reach the

minima and with significantly shorter training time.

Path taken by SGD
[https://www.geeksforgeeks.org/ml-stochastic-

gradient-descent-sgd/?ref=rp]

One thing to be noted is that, as

SGD is generally noisier than

BGD, it usually took a higher

number of iterations to reach the

minima, because of its

randomness in its descent. Even

though it requires a higher

number of iterations to reach the

minima than BGD, it is still

computationally much less

expensive than BGD.

Gradient Descent for Machine Learning

G. Oltean

BGD vs. SGD – cont.

BGD can be used for smoother curves.

SGD can be used when the dataset is large.

BGD converges directly to minima.

SGD converges faster for larger datasets.

But, since in SGD we use only one example at a time, we cannot implement the vectorized

implementation on it. This can slow down the computations. To tackle this problem,

a mixture of BGD and SGD is used:

Mini Batch Gradient Descent

Neither we use all the dataset all at once nor we use the single example at a time.

We use a batch of a fixed number of training examples which is less than the actual dataset and

call it a mini-batch. Doing this helps us achieve the advantages of both BGD and SGD.

We take the average of the gradients of the training examples in the mini-batch and then use that

mean gradient to update the parameters.

Just like SGD, the average cost over the epochs in mini-batch gradient descent fluctuates

because we are averaging a small number of examples at a time.

So, when we are using the mini-batch gradient descent we are updating our parameters

frequently as well as we can use vectorized implementation for faster computations

[https://towardsdatascience.com/batch-mini-batch-stochastic-gradient-descent-7a62ecba642a]

Gradient Descent for Machine Learning

G. Oltean

ො𝑦 = 𝑎𝑥 + 𝑏 𝑒 = 𝑒(𝑎, 𝑏) e is a function of a and b

𝐽 = 𝐽(𝑒) = 𝐽(𝑎, 𝑏) J is a function of a and b

How does F depend on a and b, in general, but also, in each particular point?

For simplicity, let’s get rid of the summation sign and division by m,

and use only the simplest version of the equivalent loss function F

𝐹 = 𝑒2 𝐹 = 𝐹(𝑎, 𝑏) F is a function of a and b

𝜕𝐹

𝜕𝑎
=

𝜕 𝑒2

𝜕𝑎
= 2𝑒

𝜕𝑒

𝜕𝑎

𝜕𝐹

𝜕𝑏
=

𝜕 𝑒2

𝜕𝑏
= 2𝑒

𝜕𝑒

𝜕𝑏

Chain

rule

applied

Calculate partial derivatives of F w.r.t. a and b

Gradient Descent
Algorithm (GDA)
Just to keep things simple, we will assume that we are looking at each error

one at a time (SGD like) – algorithm intuition

𝐽 =
1

𝑚

𝑖=1

𝑚

ො𝑦 𝑖 − 𝑦 𝑖 2
=

1

𝑚

𝑖=1

𝑚

𝑒(𝑖) 2

Gradient Descent for Machine Learning

G. Oltean

➢Chain rule

If a variable z depends on the variable y, which itself depends on the

variable x (i.e., y and z are dependent variables), then z, via the

intermediate variable of y, depends on x as well.

𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥

The chain rule states that:

𝑧 𝑦 x

Gradient Descent for Machine Learning

G. Oltean

𝜕𝐹

𝜕𝑎
=

𝜕 𝑒2

𝜕𝑎
= 2𝑒

𝜕𝑒

𝜕𝑎

𝜕𝐹

𝜕𝑏
=

𝜕 𝑒2

𝜕𝑏
= 2𝑒

𝜕𝑒

𝜕𝑏

𝑒 = ො𝑦 − 𝑦

ො𝑦 = 𝑎𝑥 + 𝑏

𝑒 = 𝑎𝑥 + 𝑏 − 𝑦
𝜕𝑒

𝜕𝑎
= 𝑥

𝜕𝑒

𝜕𝑏
= 1

𝜕𝐹

𝜕𝑎
= 2𝑒𝑥

𝜕𝐹

𝜕𝑏
= 2𝑒

The variation of F w.r.t. a

• e

• x

The variation of F w.r.t. b

• e

Gradient Descent for Machine Learning

G. Oltean

𝜕𝐹

𝜕𝑎
= 2𝑒𝑥

𝜕𝐹

𝜕𝑏
= 2𝑒

Our cost (objective) function

𝐹 = 𝑒2 = 𝑎𝑥 + 𝑏 − 𝑦 2

will be minimized by updating the values for a and b

✓ η - learning rate (constant) – controls the step size to reach the

minimum of the cost function

a ≔ 𝑎 − 𝜂𝑒𝑥

𝑏 ≔ 𝑏 − 𝜂𝑒
𝑒 = ො𝑦 − 𝑦 = 𝑎𝑥 + 𝑏 − 𝑦

𝒃 ≔ 𝒃 − 𝜼
𝝏𝑭

𝝏𝒃

error errorinput

𝒂 ≔ 𝒂 − 𝜼
𝝏𝑭

𝝏𝒂

Gradient Descent for Machine Learning

G. Oltean

One can cover more

area with larger

steps/higher learning

rate but are at the risk

of overshooting the

minima and diverge.

For linear regression ො𝑦 = 𝑎𝑥 + 𝑏

Gradient descent is applied as

https://medium.com/code-heroku/gradient-descent-for-machine-learning-3d871fa48b4c

𝒃 ≔ 𝒃 − 𝜼
𝝏𝑭

𝝏𝒃
= 𝒃 − 𝜼e

On the other hand,

small steps/smaller

learning rates will

consume a lot of

time to reach the

lowest point.

𝒂 ≔ 𝒂 − 𝜼
𝝏𝑭

𝝏𝒂
= 𝒂 − 𝜼𝒆𝒙

https://medium.com/code-heroku/gradient-descent-for-machine-learning-3d871fa48b4c

Gradient Descent for Machine Learning

G. Oltean

GDA for LR- overview

1) A random point is chosen initially by choosing random values of a and b.

2) Direction of the slope of that point is found by finding
𝜕𝐹

𝜕𝑎
 and

𝜕𝐹

𝜕𝑏
.

3) Since we want to move in the opposite direction of the slope, we will

multiply -1 with both
𝜕𝐹

𝜕𝑎
 and

𝜕𝐹

𝜕𝑏
 .

4) Since
𝜕𝐹

𝜕𝑎
 and

𝜕𝐹

𝜕𝑏
 gives only the direction, we need to multiply both with

the learning rate (η) to specify the step size of each epoch.

5) Update the values of a and b such that the error (cost function) is

reduced.

6) Repeat steps 2 to 5 until we converge at the minimum point of the cost

function

Gradient Descent for Machine Learning

G. Oltean

Case study – Python implementation
Problem:

Predict the score of a student based on number of hours studied

Data set: 25examples

 Hours - Scores

𝑆𝑐𝑜𝑟𝑒𝑠 = 𝑎 ∙ 𝐻𝑜𝑢𝑟𝑠 + 𝑏

𝑎 =? 𝑏 =?

Gradient Descent for Machine Learning

G. Oltean

Python implementation

https://colab.research.google.com/drive/14z1Xc6x-

oXANp5Y2fLVq_I5SuHwmrPcB?usp=sharing

Colab notebook

https://colab.research.google.com/drive/14z1Xc6x-oXANp5Y2fLVq_I5SuHwmrPcB?usp=sharing
https://colab.research.google.com/drive/14z1Xc6x-oXANp5Y2fLVq_I5SuHwmrPcB?usp=sharing

Gradient Descent for Machine Learning

G. Oltean

Results for BGD eta = 0.005 # learning rate

Gradient Descent for Machine Learning

G. Oltean

Results for SGD eta = 0.005 # learning rate

Gradient Descent for Machine Learning

G. Oltean

Results: BGD vs. SGD

BGD execution time for 1000 epochs:

0:00:01.555489 [s]

SGD execution time for 1000 epochs:

0:00:00.801469 [s]

For the data set of only 25 examples

Gradient Descent for Machine Learning

G. Oltean

Synthesis
ො𝑦 = 𝑎𝑥 + 𝑏

where
ො𝑦 is the predicted value,
a is the slope (weight), b is the intercept (bias).

The objective of linear regression is to find the parameters a
and b that minimize a cost function, typically the Mean
Squared Error (MSE), defined as

𝐽(𝑎, 𝑏) =
1

𝑚

𝑖=1

𝑚

ො𝑦 𝑖 − 𝑦 𝑖 2

ො𝑦 𝑖 is the i-th predicted value,
𝑦 𝑖 is the i-th target value,
m is the number of examples (size of the dataset).

Gradient Descent for Machine Learning

G. Oltean

Synthesis
At each iteration the parameters a and b are updated:

𝑎: = 𝑎 − 𝜂
𝜕𝐽

𝜕𝑎

𝑏: = 𝑏 − 𝜂
𝜕𝐽

𝜕𝑏

𝑎 ≔ 𝑎 − 𝜂𝑒𝑥
𝑏: = 𝑏 − 𝜂𝑒

where
𝜂 is the learning rate, which controls the size of the steps we
take toward the minimum of the cost function
𝑒 = ො𝑦 − 𝑦 is the error

Gradient Descent for Machine Learning

G. Oltean

Gradient Descent Algorithm Steps for Linear Regression

1. Initialize the parameters a and b with some random
values.

2. Compute the predictions ො𝑦 𝑖 = 𝑎𝑥(𝑖) + 𝑏
3. Compute the cost function J (a, b),
4. Update the parameters a and b using the gradient

descent update rules.
5. Repeat steps 2-4 until the cost function converges (i.e.,

changes very little between iterations) or until a fixed
number of iterations is reached.

Synthesis

Gradient Descent for Machine Learning

G. Oltean

Synthesis

𝑒𝑥 =
1

𝑚

𝑖=1

𝑚

(ො𝑦 𝑖 −𝑦 𝑖)𝑥 𝑖

𝑒 =
1

𝑚

𝑖=1

𝑚

(ො𝑦 𝑖 −𝑦 𝑖)

𝑎: = 𝑎 − 𝜂𝑒𝑥 = 𝑎 − 𝜂
1

𝑚

𝑖=1

𝑚

(ො𝑦 𝑖 −𝑦 𝑖)𝑥 𝑖

𝑏 ≔ 𝑏 − 𝜂𝑒 = 𝑏 − 𝜂
1

𝑚

𝑖=1

𝑚

(ො𝑦 𝑖 −𝑦 𝑖)

For BGD (batch gradient descent)

Uses the entire dataset for every update (in each training epoch)

Gradient Descent for Machine Learning

G. Oltean

Synthesis
For SGD (Stochastic gradient descent)

In each training epoch, only one training example 𝑥(𝑗), 𝑦(𝑗) ,
randomly selected from the training set is used to update the
parameters.

𝑎 ≔ 𝑎 − 𝜂𝑒𝑥 = 𝑎 − 𝜂(ො𝑦 𝑗 −𝑦 𝑗)𝑥 𝑗

𝑏 ≔ 𝑏 − 𝜂𝑒 = 𝑏 − 𝜂(ො𝑦 𝑖 −𝑦 𝑖)

Gradient Descent for Machine Learning

G. Oltean

Problem

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑎 ∙ 𝐼𝑛𝑝𝑢𝑡 + 𝑏

𝑎 =? 𝑏 =?

a) Perform the operations for the 1st training epoch of GDA considering

the starting point a = 0, b = 0, η = 0.0005, in both cases: BGD and SGD.

b) What are the values of the cost function (MSE) in the starting point

and after the 1st training epoch in both cases?

Gradient Descent for Machine Learning

G. Oltean

Solution BGD

Gradient Descent for Machine Learning

G. Oltean

Solution SGD

	Slide 1: Gradient Descent for Machine Learning
	Slide 2
	Slide 3
	Slide 4: Simple Linear Regression - revisited
	Slide 5: Gradient descent algorithm
	Slide 6
	Slide 7: Gradient descent algorithm
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: GDA for LR- overview
	Slide 21: Case study – Python implementation
	Slide 22: Python implementation
	Slide 23: Results for BGD
	Slide 24: Results for SGD
	Slide 25: Results: BGD vs. SGD
	Slide 26: Synthesis
	Slide 27: Synthesis
	Slide 28: Synthesis
	Slide 29: Synthesis
	Slide 30: Synthesis
	Slide 31: Problem
	Slide 32: Solution BGD
	Slide 33: Solution SGD

