Performance measures of a binary classification

The **performance** of pattern recognition system can be very well characterized by the **recognition rates** considered for each class considering a **binary classification** problem.

Thus, for each class

- the example (instance, sample) belonging to the class is considered positive
- the example (instance, sample) not belonging to the class is considered negative.

Classification results

- **True positive** *TP* (correctly classified as positive; *hit*) an instance belonging to the class is correctly classified as belonging to the class;
- **True negative** *TN* (correctly classified as negative, *correct rejection*) an instance that does not belong to the class is correctly classified as not belonging to the class;

- False pozitiv FP (incorrectly classified as positive, false alarm) an instance that does not belong to the class is classified (incorrectly) as belonging to the class;
- False negative *FN* (incorrectly classified as negative, *miss*) an instance belonging to the class is classified (incorrectly) as not belonging to the class;

Confusion matrix

The confusion matrix (error matrix) provides a granular way to evaluate the results of a classification algorithm than just accuracy.

It does this by dividing the results into two categories that join together within the matrix:

- Truth labels (targets) actual class
- Predicted labels (outputs of the model) predicted class

Each row in a confusion matrix represents an actual class Each column represents a predicted class

True / False from the prediction perspective

- □ [1][1] represents the values which are predicted to **be false and are false**. **TN**
- [2][1] represents the values which are predicted to be false but are true. FN
- □ [1][2] represents the values which are predicted to be true but are false. **FP**
- □ [2][2] represents the values which are predicted to be true and are true. TP

- **True negative** *TN* (correctly classified as negative, *correct rejection*) an instance that does not belong to the class is correctly classified as not belonging to the class;
- True positive TP (correctly classified as positive; *hit*) an instance belonging to the class is correctly classified as belonging to the class;
- False pozitiv *FP* (incorrectly classified as positive, *false alarm*) an instance that does not belong to the class is classified (incorrectly) as belonging to the class;
- False negative *FN* (incorrectly classified as negative, *miss*) an instance belonging to the class is classified (incorrectly) as not belonging to the class;

Recognition rates

• True positive rate (*sensitivity; recall; hit rate*):

TPR = TP / P = TP / (TP + FN)

Correctly classified as positive out of all positive examples

• True negative rate (*specificity; selectivity*): TNR = TN / N = TN / (TN + FP)

Correctly classified as negative out of all negative examples

• False positive rate (*fall-out*): FPR = FP / N = FP / (TN + FP)

Incorrectly classified as positive out of all negative examples

Incorrectly classified as negative out of all positive examples

æ

False negative rate (miss rate): FNR = FN / P = FN / (TP + FN)

TPR + FNR = 1TNR + FPR = 1

• Precision (positive predicted values): PPV = TP / (TP + FP)Correctly classified as positive out of all positive predictions The success probability of making a correct positive class prediction

• Accuracy:

ACC = (TP + TN) / (P + N) = (TP + TN) / (TP + FN + TN + FP)

Success probability of detecting the positive and negative classes (# correct predictions / # total predictions)

• Recall (TPR):

$$Recall = TP / P = TP / (TP + FN)$$

How sensitive the model is towards identifying the positive class

$$f1 - score = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$

f1-score is the harmonic mean of precision and recall (a combined metric) *f1-score* gives a higher weight to low values.

We can only have a high *f1-score* if both precision and recall are high.

Illustration

sklearn.metrics.classification_report(truth, predicted)

	precision	recall	f1-score	support
0	0.69	0.90	0.78	10
1	0.89	0.67	0.76	12
accuracy			0.77	22
macro avg	0.79	0.78	0.77	22
weighted avg	0.80	0.77	0.77	22

metrics.confusion_matrix(truth, predicted)

macro average averaging the unweighted mean per label weighted average averaging the support-weighted mean per label

Exercise

Determine:

TP TN FP FN TPR TNR FPR FNR

Precision Accuracy Recall

f1-score

Confusion matrix for multiclass classification

truth: 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 01 predicted: [2 1 1 2 2 2 20222 2

Æ

G. Oltean

PREDICTED (OUTPUT)

- 8

- 4

- 2

CNN implementation using TensorFlow2 to classify the **MNIST FASION** dataset

>>	Metrics	classification	report:
----	---------	----------------	---------

	precision	recall	f1-score	support		
0	0.83	0.87	0.85	1000		
1	0.99	0.97	0.98	1000		
2	0.86	0.85	0.85	1000		
3	0.87	0.93	0.90	1000		
4	0.82	0.85	0.83	1000		
5	0.98	0.97	0.98	1000		
6	0.78	0.67	0.72	1000		
7	0.96	0.95	0.95	1000		
8	0.98	0.98	0.98	1000		
9	0.95	0.97	0.96	1000		
accuracy			0.90	10000		
macro avg	0.90	0.90	0.90	10000		
weighted avg	0.90	0.90	0.90	10000		

Confusion Matrix												
0	873	0	10	36	2	3	69	0	7	0		
Ч	5	970	0	19	1	0	4	0	1	0		- 800
5	23	З	852	11	65	0	44	0	2	0		
m ·	19	2	9	927	24	0	19	0	0	0		- 600
farget) 4 ·	2	3	59	35	848	0	51	0	2	0		
TRUTH (1 5	0	0	0	1	0	974	0	14	0	11		- 400
9.	128	1	64	36	92	1	671	0	7	0		100
2	0	0	0	0	0	9	0	947	0	44		- 200
ω.	2	1	2	4	4	З	1	2	981	0		200
6	0	0	0	0	0	4	1	25	0	970		
	ò	i	ź	3 PRE	4 DICTED	5 O (OUTP	ь тот	ż	8	9		- 0

