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Convolutional
Neural Network

(CNN)

Video:   Deep Learning and Traditional Machine Learning: 

Choosing the Right Approach  

https://www.mathworks.com/videos/ai-for-engineers-building-an-ai-system-1603356830725.html
https://www.mathworks.com/videos/ai-for-engineers-building-an-ai-system-1603356830725.html
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Why CNN?
If working with simple images, for example MINST data set

▪  28 x 28 x 1 (b&w; 1 channel) = 784 features

The size of the input layer 
in a deep ANN is 784

 – can be manageable.

http://yann.lecun.com/exdb/mnist/ 

http://yann.lecun.com/exdb/mnist/
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https://medium.com/intelligentmachines/convolutional-neural-network-and-regularization-techniques-with-tensorflow-and-keras-
5a09e6e65dc7

https://medium.com/intelligentmachines/convolutional-neural-network-and-regularization-techniques-with-tensorflow-and-keras-5a09e6e65dc7
https://medium.com/intelligentmachines/convolutional-neural-network-and-regularization-techniques-with-tensorflow-and-keras-5a09e6e65dc7
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Big challenge - dimensionality
If working with “real” images
512 x 512 x 3 (3 channels) = 786,432 features

786,432 

inputs

1000 

hidden 

units

layer [1]:  W[1] : (1000; 786,432);  786,432,000 – weights + 1000 biases

Way too many training parameters, especially in layer [1]

• Very difficult to get enough data to prevent overfitting

• Computation and memory requirements tend to be infeasible

Is this a lion? 

(or a cat, a dog, etc.)

Find a way to use far less parameters for the same problem!



CNN (ConvNet) for deep learning

• CNN – Convolutional Neural Network

❑  A class of deep neural networks, most applied to analyzing 
visual imagery. 

❑  Applications in image and video recognition, recommender 
systems, image classification, medical image analysis, and natural 
language processing (NLP), text processing, etc

❖  Little pre-processing compared to other image classification 

algorithms. 

❖  The network learns the filters that in traditional algorithms were 
hand-engineered (features extraction). 

✓  This independence from prior knowledge and human effort 

in feature design and extraction is a major advantage



CNN (ConvNet) for deep learning

• CNN – Convolutional Neural Network

➢  CNNs eliminate the need for manual feature extraction

▪  no need to identify features used to classify images 

➢  The CNN works by extracting features directly from images. 

➢  The relevant features are not pretrained; they are learned while 

the network trains on a collection of images. 

❑  The automated feature extraction makes deep learning models 

highly accurate for computer vision tasks such as object 

classification/recognition.



CNN (ConvNet) for deep learning

❑  The network employs a mathematical operation called 
convolution. 

❑  CNN are simply neural networks that use convolution 
in place of general matrix multiplication in at least one 
of their layers.

❑ CNN have learnable parameter like conventional neural 
network (weights, biases, etc.). 

❖ Convolution  

▪  a specialized kind of linear operation

▪  a mathematical operation on two functions (f and g) that 
produces a third function expressing how the shape of one 
function (f) is modified by the other function (g).

▪  defined as the integral of the product of the two functions after 
one (g) is reversed and shifted.



Let’s think about how we recognize a face. 

✓  We can recognize a face because it present a set of features: eyes, 
nose, ears, hair, etc. 

✓  To decide if an object is a face, we do it as if we had some mental 
boxes of verification of the features that we are marking. 

➢Sometimes a face may not have an ear (it is covered by hair), but we 
still classify it with a certain probability as a face due to the presence 
of the other features.

➢Actually, we can see it as a classifier that predicts a probability that 
the input image is a face or no face.

Some intuition



❖  In reality, we must first know what an eye or a nose is like:

✓ we must previously identify lines, edges, textures or shapes that are 
like those containing the eyes or noses

▪ this is what the layers of a convolutional neuronal network are 
entrusted to do.

❖   Identifying these elements is insufficient to say that an object is a face. 

❖   We also must identify how the parts of a face meet each other, relative 

sizes, etc.; otherwise, the face would not resemble what we are used to.

Some intuition

➢  In a convolutional neural network, each layer is learning different 

levels of abstraction. 

➢  With networks with many layers, it is possible to identify more 

complex structures in the input data.

[Jordi TORRES.AI, Convolutional Neural Networks for Beginners using Keras & TensorFlow 2, Apr 22, 2020, 

https://towardsdatascience.com/convolutional-neural-networks-for-beginners-using-keras-and-tensorflow-2-c578f7b3bf25] 

https://towardsdatascience.com/convolutional-neural-networks-for-beginners-using-keras-and-tensorflow-2-c578f7b3bf25


Feature detector 

Edge detector - where are 

the edges? (groups pixels 

to form edges)

Take the detected edges; groups 

edges together to form part of 

faces (eye, nose, chin, etc) 

Putting together different 

parts of the faces to form 

faces 

The complexity of the detected function increases (edges => parts of faces => faces)

Simple things                                                                                           Complex things

Very small window Large window

Simple to 

complex 

hieratical 

representation

Pixels

[Andrew Ng, Why deep representation?, https://www.coursera.org/lecture/neural-networks-deep-learning/why-deep-representations-rz9xJ] 

Convolutional layers can learn spatial hierarchies of patterns by preserving spatial relationships. 

A first convolutional layer can learn basic elements such as edges.

A second convolutional layer can learn patterns composed of basic elements learned in the previous layer. 

And so on until it learns very complex patterns. 

This allows CNNs to efficiently learn increasingly complex and abstract visual concepts.

https://www.coursera.org/lecture/neural-networks-deep-learning/why-deep-representations-rz9xJ
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CNNs learn to detect different features of an image using tens or hundreds of hidden layers. 

Every hidden layer increases the complexity of the learned image features. 

For example, the first hidden layer could learn how to detect edges, and the last learns how to detect 
more complex shapes specifically catered to the shape of the object we are trying to recognize.

CNN with many convolutional layers (deep)

Filters are applied to each training image at different resolutions, and the output of each 
convolved image serves as the input to the next layer.

[Deep Learning, MathWorks 
https://www.mathworks.com/discovery/
deep-learning.html]

https://www.mathworks.com/discovery/deep-learning.html
https://www.mathworks.com/discovery/deep-learning.html


Layers in CNN

https://www.youtube.com/watch?v=Jy9-aGMB_TE 

https://www.youtube.com/watch?v=Jy9-aGMB_TE
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Each neuron in the hidden layer  

will be connected to a small 

region of 5×5 neurons (i.e. 25 

neurons) of the input layer 

(28×28). 

We can think of a 5×5 size 

window that slides along the 

entire 28×28 neuron layer of 

input that contains the image. For 

each position of the window there 

is a neuron in the hidden layer 

that processes this information.

[Jordi TORRES.AI, Convolutional Neural Networks for Beginners using Keras & TensorFlow 2, Apr 22, 2020, 

https://towardsdatascience.com/convolutional-neural-networks-for-beginners-using-keras-and-tensorflow-2-c578f7b3bf25 ] 

The center of the filter (kernel) is aligned with the current pixel and is a 

square with an odd number (3, 5, 7, etc.) of elements in each dimension.

E.g.  kernel size: 5 x 5  

Convolution
Convolution is the process of adding each element (pixel) of the image to its local 

neighbors, weighted by a kernel (filter).

https://towardsdatascience.com/convolutional-neural-networks-for-beginners-using-keras-and-tensorflow-2-c578f7b3bf25


Elements of Artificial Intelligence G. Oltean 

[Jordi TORRES.AI, Convolutional Neural Networks for Beginners using Keras & 

TensorFlow 2, Apr 22, 2020, https://towardsdatascience.com/convolutional-neural-

networks-for-beginners-using-keras-and-tensorflow-2-c578f7b3bf25 ] 

We start with the window in the top left 

corner of the image, and this gives the 

necessary information for the first neuron 

of the hidden layer. 

Then, we slide the window one position to 

the right (stride =1) to “connect” the 5×5 

neurons of the input layer included in this 

window with the second neuron of the 

hidden layer. 

And so, successively, we go through the 

entire space of the input layer, from left to 

right and top to bottom.

Convolution

For convolution: 

25 weights in a W matrix (kernel)

1 bias values

In total 26 parameters.

For a conventional ANN (not fully connected)

14,400 = (24x24) x (5x5) weights in a W matrix

576 = 24 x 24 bias values

In total 14,976 parameters.

Drastically reduces the number of parameters 

Each neuron in layer l is connected only with 5x5 
neurons in the l-1 layer (as is the case for convolution)

https://towardsdatascience.com/convolutional-neural-networks-for-beginners-using-keras-and-tensorflow-2-c578f7b3bf25
https://towardsdatascience.com/convolutional-neural-networks-for-beginners-using-keras-and-tensorflow-2-c578f7b3bf25
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Illustration for input size: (5,5); filter (kernel) size: (3,3), stride = (1,1) 

Filter (kernel) 

(3; 3)

Input 

image 

(5,5)

Feature 

map 

(3,3)

* =
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Convolution – edge (feature) detection in CNN

• To detect edges in complicated images, we may want vertical, horizontal, different 

degree edges, or even more complex ones

• It makes almost impossible for a researcher to figure out the most 

appropriate filter (that 25 numeric values in a 5 x 5 filter) 

• What about learning the filter as parameters (using backpropagation):

𝑤11 𝑤12 𝑤13 𝑤14 𝑤15

𝑤21 𝑤22 𝑤23 𝑤24 𝑤25

𝑤31 𝑤32 𝑤33 𝑤34 𝑤35

𝑤41 𝑤42 𝑤43 𝑤44 𝑤45

𝑤51 𝑤52 𝑤53 𝑤54 𝑤55

• The filter can learn from data to detect (extract) interesting low-level feature from 

the input image 

• Very powerful idea in computer vision

Convolution layers use different filters to be able to identify different 
aspects in an image: edges, corners, body parts (eyes, ear, paw, fur,  etc.)
The filters (the weights and biases) are learned during the training process
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E.g.: using 32 filters (one filter for each characteristic), we can extract 

32 different characteristics at once, for the same input layer

[Jordi TORRES.AI, Convolutional Neural 

Networks for Beginners using Keras & 

TensorFlow 2, Apr 22, 2020, 

https://towardsdatascience.com/convolutional-

neural-networks-for-beginners-using-keras-and-

tensorflow-2-c578f7b3bf25 ] 

One filter defined by one matrixW and one bias b only allows detecting a 

specific characteristic (one characteristic) in an image.

 To perform image recognition, it is necessary to use several filters at the same 

time, to extract several characteristics in the same convolutional layer. 

A complete convolutional layer in a convolutional neuronal 
network includes several filters.

https://towardsdatascience.com/convolutional-neural-networks-for-beginners-using-keras-and-tensorflow-2-c578f7b3bf25
https://towardsdatascience.com/convolutional-neural-networks-for-beginners-using-keras-and-tensorflow-2-c578f7b3bf25
https://towardsdatascience.com/convolutional-neural-networks-for-beginners-using-keras-and-tensorflow-2-c578f7b3bf25
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Image filtering is useful for many applications, including smoothing, sharpening, 

removing noise, and edge detection.

A filter is defined by a kernel, which is a small array applied to each pixel and its 

neighbors within an image. 

The center of the kernel is aligned with the current pixel 

     - a square with an odd number (3, 5, 7, etc.) of elements in each dimension.

A high pass filter is the basis for most sharpening methods. 

An image is sharpened when contrast is enhanced between adjoining areas with 

little variation in brightness or darkness.

A high pass filter tends to retain the high frequency information within an image while 

reducing the low frequency information. 

The kernel of the high pass filter is designed to increase the brightness of the center 

pixel relative to neighboring pixels. 

The kernel array usually contains a single positive value at its center, which is 

surrounded by negative values.

https://northstar-www.dartmouth.edu/doc/idl/html_6.2/Filtering_an_Imagehvr.html 

high pass 

filters 

example: 

https://northstar-www.dartmouth.edu/doc/idl/html_6.2/Filtering_an_Imagehvr.html
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1  0  0

0  2  0

1  2  0

26

1  2  3

4  5  6

7  8  9∗ =

Convolution / 

Cross correlation
Image matrix 

(function) f

Filter matrix 

(function)  g 

For convolution, the initial filter matrix (g) is initially flipped vertically and horizontally

1  0  0

0  2  0

1  2  0

7  8  9 

4  5  6

1  2  3

9  8  7 

6  5  4

3  2  1

9*1+8*0+7*0+

6*0+5*2+4*0+

3*1+2*2+1*0 = 26

1  2  3

4  5  6

7  8  9

For cross-correlation, the initial filter matrix (g) is used as it is

34

1  2  3

4  5  6

7  8  9* =

1  0  0

0  2  0

1  2  0

1*1+2*0+3*0+

4*0+5*2+6*0+

7*1+8*2+9*0 = 34

By convention in machine learning /deep learning we will 

use the term convolution for cross-correlation.
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Convolution – vertical edge detection

10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

-1     0    1

 -1     0    1

 -1     0    1
*

0     0   270   270     0     0

     0     0   270   270     0     0

     0     0   270   270     0     0

     0     0   270   270     0     0

     0     0   270   270     0     0

     0     0   270   270     0     0

=

Original image

(8, 8)

Filter (kernel)

(3, 3)

Output image

(6, 6)

(𝑛, 𝑛) (𝑓, 𝑓)
(𝒏 − 𝒇 + 𝟏, 𝒏 − 𝒇 + 𝟏)

Dimensions

(8, 8) (3, 3)
(8 − 3 + 1, 8 − 3 + 1)

(6, 6)

At each edge of the original image,  
𝑓

2
− 0.5   pixels are lost.

In total 2 ∙
𝑓

2
− 0.5 , meaning 𝒇 − 𝟏 pixels are lost, on each dimension.
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Convolution – vertical edge detection

Original image

(128, 128)

Filter (kernel)

(3, 3)

Output image

(126, 126)

-1     0    1

 -1     0    1

 -1     0    1
* =

Dark to light transition
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Convolution – vertical edge detection

Original image

(256, 256)

Filter (kernel)

(3, 3)

Output image

(254, 254)

-1     0    1

 -1     0    1

 -1     0    1
* =

dark to light; light to dark transitions 

on the horizontal direction
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C
o
n

v
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 v
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10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

-1     0    1

 -1     0    1

 -1     0    1
*

0     0   270   270     0     0

     0     0   270   270     0     0

     0     0   270   270     0     0

     0     0   270   270     0     0

     0     0   270   270     0     0

     0     0   270   270     0     0

=

10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

-1     0    1

 -2     0    2

 -1     0    1
*

0     0   360   360     0     0

     0     0   360   360     0     0

     0     0   360   360     0     0

     0     0   360   360     0     0

     0     0   360   360     0     0

     0     0   360   360     0     0

=

10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

-3    0    3

-10   0   10

 -3    0    3
*

0     0   1440   1440     0     0

     0     0   1440   1440     0     0

     0     0   1440   1440     0     0

     0     0   1440   1440     0     0

     0     0   1440   1440     0     0

     0     0   1440   1440     0     0

=

Sobel

Scharr
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Convolution – horizontal edge detection

10    10    10    10    10    10   10    10

    10    10    10    10    10    10   10   10

    10    10    10    10    10    10    10    10

    10    10    10   10    10    10    10   10

   100   100   100   100   100   100   100   100

   100   100   100   100   100   100   100   100

   100   100   100   100   100   100   100   100

   100   100   100   100   100   100   100   100

-1   -1  -1

 0     0    0

 1     1     1
*

0      0       0      0      0       0

     0      0       0      0      0       0

   270   270   270   270   270   270

   270   270   270   270   270   270

     0      0       0      0      0       0

     0      0       0      0      0       0

=

Original image

(8, 8)

Filter (kernel)

(3, 3)

Output image

(6, 6)

no padding

dark to light; light to dark transitions 

on the vertical direction
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Convolution – horizontal edge detection

Original image

(128, 128)

Filter (kernel)

(3, 3)

Output image

(126, 126)

no padding

* =

Dark to light transition

-1   -1  -1

 0     0    0

 1     1     1
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*                         =

Sharpening 
filter

0 -1 0

-1 5 -1

0 -1 0

stride = 1

Adjust the 
contrast of 
the image by 
applying 
Histogram 
Equalization
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*                         =

Edge detection 
filter

-1 -1 -1

-1 8 -1

-1 -1 -1

stride = 1
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*                         =

Edge detection 
filter 

-1 0 +1

-2 0 +2

-1 0 +1

Sobel; horizontal 
changes 

(vertical edges)

stride = 1
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Convolution
http://machinelearninguru.com/computer_vision/basics/co
nvolution/image_convolution_1.html 

105*0 + 102*(-1) + 100*0 +
103*(-1) + 99*5 + 103*(-1) +
101*0 + 98*(-1) + 104*0 =        
89

Sharpening 
filter (kernel)

Sharpening an image increases the contrast 
between bright and dark regions to bring out 
features.

The sharpening process is basically the 
application of a high pass filter to an image.

f g

f * g :

Element-wise 

multiplication 

and addition

http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html
http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html


http://machinelearninguru
.com/computer_vision/bas
ics/convolution/image_con
volution_1.html 

?

http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html
http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html
http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html
http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html


http://machinelearninguru
.com/computer_vision/bas
ics/convolution/image_con
volution_1.html 

http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html
http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html
http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html
http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html


http://machinelearninguru
.com/computer_vision/bas
ics/convolution/image_con
volution_1.html 

?

?

Pixels on 
the border 
of image 
matrix?

http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html
http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html
http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html
http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html


http://machinelearninguru.com/
computer_vision/basics/convolut
ion/image_convolution_1.html 

(1 pixel padding 
here, all around) 

The process of 
adding zeros to the 
input matrix 
symmetrically to 
maintain the 
dimension of 
output as in input.

Padding depends 
on the dimension 
of the filter.

http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html
http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html
http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html
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Padding – padded convolution

* =
(𝒏, 𝒏) (𝒇, 𝒇)

(𝒏 − 𝒇 + 𝟏, 𝒏 − 𝒇 + 𝟏)

(𝟖, 𝟖) (𝟑, 𝟑)
(𝟖 − 𝟑 + 𝟏, 𝟖 − 𝟑 + 𝟏)

(𝟔, 𝟔)

0 0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0 0

* =
(𝒏, 𝒏) (𝒇, 𝒇)

(𝒏 + 𝟐𝒑 − 𝒇 + 𝟏, 𝒏 + 𝟐𝒑 − 𝒇 + 𝟏)

(𝟖, 𝟖) (𝟑, 𝟑)
(𝟖 + 𝟐 − 𝟑 + 𝟏, 𝟖 + 𝟐 − 𝟑 + 𝟏)

(𝟖, 𝟖)

𝒑 = 𝟏

Valid convolution – no padding, the image is shrinking

Same convolution – padding, the size is the same

𝒑 = 𝟎
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Padding – padded convolution

Same convolution 

• padding, 

• the size of the feature map is the same with the size of the 

input image.

Compute the necessary padding size, p =?

𝒏 + 𝟐𝒑 − 𝒇 + 𝟏 = 𝒏 
 

𝒑 =
𝒇 − 𝟏

𝟐

Odd number for the filter size (3, 5, 7)     is recommended.

There is a center of the filter, so one can talk about the position of the filter.
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Illustration for input size: (5,5); filter size: (3,3), stride = (1,1) 

Stride denotes how many steps we are moving in 
each steps in convolution.

Usually, it is s = 1
stride = amount you 

move the window each 

time you slide

Filter 

(3; 3)

Input image 

(5,5)

Feature map 

(3,3)

* =
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Size of the output image (feature map)

* =
Input:            (n; n),  (5; 5)

Filter:            (f; f)     (3; 3)

Padding:                    p = 0

Stride:                        s = 2

Output:                      (2; 2)

𝒏 + 𝟐𝒑 − 𝒇

𝒔
+ 𝟏 ;

𝒏 + 𝟐𝒑 − 𝒇

𝒔
+ 𝟏

𝟓 + 𝟐 ∙ 𝟎 − 𝟑

𝟐
+ 𝟏 ;

𝟓 + 𝟐 ∙ 𝟎 − 𝟑

𝟐
+ 𝟏

𝟐; 𝟐

𝒏 + 𝟐𝒑 − 𝒇

𝒔
+ 𝟏 

 rounded down (floor)
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Convolution over volume
Convolution over a RGB input image

3 input channels

*
=

*
=

(6, 6, 3)                                 (3, 3, 3)                         (4, 4)

3 x 3 x 3 = 27 weights 

(height, width, channels)

Each convolution 

over volume 

produces one 2D 

output

n = 6

f  = 3

p = 0

s = 1
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* =

* =

* =

* =

Convolution over volume - multichannel

1 3D input image; 4 3D filters; 4 2D output images

3 input channels;                          4 output channels

We can extract multiple features 

(using multiple filters) in one step

Horizontal 

edges on all 

channels

Vertical edges 

on green 

channel

73 degrees 

edges 

………… 

3 input channels

6x6x3 = 108 pixels

4 output channels

In case of 128 3D filters;

128 output channels

4x4x128 = 2048 values

output  (4 channels)

4x4x4 = 64 numbers
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http://cs231n.github.io/
convolutional-networks/

filter 0 filter 1

output 

channel  0

output 

channel  1

3 input channels; 2 3D filters, 2 output channels

n = 5, f=3, p =1, s =2

output channel size: 

𝑛+2𝑝−𝑓

𝑠
+ 1 =

5+2∙1−3

2
+ 1 =3

 

Illustration 

for 

multichannel 

convolution

http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/
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http://cs231n.github.io/
convolutional-networks/ 

Applying K=2 different 3D filters (W0 and W1)
Will generate 2 output channels

filter 0 filter 1

output 

channel  0

output 

channel  1

3 input channels; 2 3D filters, 2 output channels

n = 5, f=3, p =1, s =2

output channel size: 

𝑛+2𝑝−𝑓

𝑠
+ 1 =

5+2∙1−3

2
+ 1 =3

 

Illustration 

for 

multichannel 

convolution

http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/


ReLU layer
Once the feature map is 
extracted by the convolution, 
the next operation is to apply 
the ReLU activation function 

s

y

𝑦 = max(0, 𝑠)

https://www.youtube.com/watch?v=Jy9-aGMB_TE 

https://www.youtube.com/watch?v=Jy9-aGMB_TE


Input image

Input feature map Rectified feature map

Input image is scanned in multiple convolution and ReLU layers

. . .

. . .

Convolution
Multiple filters

ReLU



First 5 columns and rows of the input image matrix:
 
 [[33.6861 21.462  22.3216 32.8946 29.1734]
 [62.8323 38.6861 21.462  15.7388 12.1618]
 [53.7622 55.191  50.8323 39.2553 27.7504]
 [67.3392 79.3392 74.3372 57.8323 47.2553]
 [85.2028 79.8441 50.8421 29.3314 34.8323]]

First 5 columns and rows of the image sharpen matrix:
 
 [[ 84.1362  12.3258  36.2923  95.4401  78.5729]
 [188.1617  33.9352 -19.8438 -29.4384 -28.3799]
 [ 80.8206  54.1131  63.916   44.8381  15.6216]
 [121.9746 116.2651 133.6276  98.9823  78.1111]
 [196.6922  98.347    8.774  -31.7601  18.4111]]

First 5 columns and rows of the image sharpen+ReLU matrix:
 
 [[ 84.1362  12.3258  36.2923  95.4401  78.5729]
 [188.1617  33.9352   0.       0.       0.    ]
 [ 80.8206  54.1131  63.916   44.8381  15.6216]
 [121.9746 116.2651 133.6276  98.9823  78.1111]
 [196.6922  98.347    8.774    0.      18.4111]]



Convolution + ReLU – one layer operation

*
=

*
=

*
=

… …

+𝑏1 ReLU

+𝑏2 ReLU

+𝑏
𝑛𝑐

𝑙
 ReLU

…

=

=

=

Layer [𝒍]Input

𝑛𝑐
[𝑙−1]

 input channels

𝑛𝐻
[𝑙−1]

× 𝑛𝑊
[𝑙−1]

× 𝑛𝑐
[𝑙−1]

Output

𝑛𝑐
[𝑙]

 output channels

𝑛𝐻
[𝑙]

× 𝑛𝑊
[𝑙]

× 𝑛𝑐
[𝑙]

𝑎 𝑙 = 𝑔 𝑙 𝑧 𝑙

𝑧 𝑙 = 𝑊 𝑙 𝑎 𝑙−1 + 𝑏 𝑙

𝑊 𝑙 𝑊 𝑙 𝑎 𝑙−1𝑎 𝑙−1 𝑧 𝑙

𝑎 𝑙 = 𝑔 𝑙 𝑧 𝑙

Forward propagation 

…

Filters  (𝑛𝑐
[𝑙]

)

𝑓 𝑙 × 𝑓 𝑙 × 𝑛𝑐
[𝑙−1]



CNN – one layer. 

Parameters

Hyperparameters

𝑊: 𝑓 𝑙 × 𝑓 𝑙 × 𝑛𝑐
𝑙−1

× 𝑛𝑐
𝑙

𝑛𝑐
𝑙
    one scalar for each filter𝑏:

𝑓 𝑙 = 3 filter size

𝑛𝑐
𝑙−1

= 3 number of input channel

𝑛𝑐
𝑙

= 16 number of filters (output channel)

3 × 3 × 3 × 16 + 16 = 448 parameters in layer [𝑙]

No matter how big the input (image) is, 
the number of parameters is the same.

Hyperparameters

𝑓 𝑙  filter size

𝑛𝑐
𝑙
  number of filters (output channels)

𝑠 𝑙  stride

𝑝 𝑙  padding



Convolution 

+ ReLU

𝑠 𝑙  stride

𝑝 𝑙  padding

𝑛𝑊
𝑙

=
𝑛𝑊

𝑙−1
+ 2𝑝 𝑙 − 𝑓 𝑙

𝑠 𝑙
+ 1 𝑛𝐻

𝑙
=

𝑛𝐻
𝑙−1

+ 2𝑝 𝑙 − 𝑓 𝑙

𝑠 𝑙
+ 1 

Input 𝑎 𝑙−1
 : 𝑛𝐻

[𝑙−1]
× 𝑛𝑊

[𝑙−1]
× 𝑛𝑐

[𝑙−1]

Output 𝑎 𝑙
 : 𝑛𝐻

[𝑙]
× 𝑛𝑊

[𝑙]
× 𝑛𝑐

[𝑙]

Vectorized for m examples (batch)

Input 𝐴 𝑙−1
 : 𝑚 × 𝑛𝐻

[𝑙−1]
× 𝑛𝑊

[𝑙−1]
× 𝑛𝑐

[𝑙−1]

Output 𝐴 𝑙
 : 𝑚 × 𝑛𝐻

[𝑙]
× 𝑛𝑊

[𝑙]
× 𝑛𝑐

[𝑙]



Simple Convolutional Neural Network (ConvNet)

𝑎 0 𝑎 1 𝑎 2 𝑎 3

𝑓 1 = 3

𝑠 1 = 1

𝑝 1 = 0

𝑛𝑐
1

 = 8

[1]

64 × 64 × 3 62 × 62 × 8

𝑛𝑊
𝑙

=
𝑛𝑊

𝑙−1
+ 2𝑝 𝑙 − 𝑓 𝑙

𝑠 𝑙
+ 1 𝑛𝐻

𝑙
=

𝑛𝐻
𝑙−1

+ 2𝑝 𝑙 − 𝑓 𝑙

𝑠 𝑙
+ 1 

𝑓 2 = 5

𝑠 2 = 2

𝑝 2 = 0

𝑛𝑐
2

 = 16

[2]

29 × 29 × 16

𝑓 3 = 7

𝑠 3 = 2

𝑝 2 = 0

𝑛𝑐
2

 = 32

[3]

12 × 12 × 32

CONV CONV CONV

• image size stays almost the same in the beginning, then slightly decreases
• number of channels (filters) increases



Pooling layer
Once the feature map is rectified by the ReLU activation function, the next 
operation is to down-sampling the images to reduce the dimensionality 
through a pooling layer

0 0 14 82

149 32 0 0

28 53 64 44

39 120 133 99

Rectified feature map

149 82

120 133

max pooling

2 x 2 filter
stride 2 Pooled feature map

4 x 4 = 16 2 x 2 = 4

Dimensionality reduction (given by the filter size and stride): 
    

4 to 1;     4 times

Dimensionality reduction for 2x2 filter and stride 1?

Max pooling – how valuable is a feature in the area of the filter
▪  best (maximum feature value)
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14
9

32 31 0

11
1

200 20 135

28 53 20 64

39 120 210 13

149 32 31 0 0

111 200 20 135 10

28 53 20 64 44

39 120 210 13 99

Pooling layer

0 0 25 14 82

149 32 31 0 0

111 200 20 135 10

28 53 20 64 44

39 120 210 13 99

Rectified feature map

200 200 135

200 200 135

210 210 210

max pooling

3 x 3 filter; f = 3
stride 1;  s = 1

Pooled feature map

𝑛𝐻  × 𝑛𝑊  × 𝑛𝑐 

𝑛𝐻 − 𝑓

𝑠
+ 1 ×

𝑛𝑊 − 𝑓

𝑠
+ 1 × 𝑛𝑐  

Apply on each channel independently

No parameters to learn

Hyperparameters: f, s

Average pooling is (very) rarely used



Flattening

Once the dimensionality of the data volume  is reduced to a 
manageable size, we must connect further with the fully 
connected (FC) layer.

We need to convert the pooled feature map to a column vector 
using the flattening operation

149 82

120 133

Pooled feature map

Flattening
149

82

120

133



3 6

9 12

2 5

8 11

1 4

7 10

1

2

3

4

5

6

7

8

9

10

11

12

[[[1  2  3]
 [4  5  6]]

[[7  8  9]
[10 11 12]]]

[1  2  3  4  5  6  7   8  9  10  11 12]

Flattening



Fully connected layer

The vector (flattened 2D array) from the pooling layer is fed to 
the fully connected layer (conventional feed-forward ANN) to 
classify the image

Fully connected layer

Plion

Pgiraffe

Pbird

https://www.youtube.com/watch?v=Jy9-aGMB_TE 

https://www.youtube.com/watch?v=Jy9-aGMB_TE
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In deep learning, the term logits layer is popularly used for the last neuron layer of neural network for 

classification task which produces raw prediction values as real numbers ranging from [-infinity, +infinity]. 

Before activation take place.

Softmax acts as an activation function, and it turns logits (numeric output of the last linear layer of a multi-

class classification neural network) into probabilities by taking the exponents of each output and then 

normalizing each number by the sum of those exponents.

Softmax activation function (used in CNN)

So, the entire output vector adds up to one — all probabilities should add up to one.

Cross entropy loss is usually the loss function for such a multi-class classification problem.

Softmax is frequently appended to the last layer of a multi-class image classification 
network such as those in CNN ( Alexnet, VGG16, etc.) used in ImageNet competitions.

 [Understand the Softmax Function in Minutes, January 2018, https://medium.com/data-science-bootcamp/understand-the-
softmax-function-in-minutes-f3a59641e86d]

5.0
6.0

1.0

2.0

0.2641

0.7179

0.0048

0.0131

(s)

𝒇 𝒔𝒊 =
𝒆𝒔𝒊

σ𝒋 𝒆𝒔𝒋



lion

bear

bird

giraffe

Plion

Pbear

Pgiraffe

Pbird

Feature extraction Classification

https://towardsdatascience.com/covolutional-neural-network-cb0883dd6529 Adaptation after:

CNN – big picture

https://towardsdatascience.com/covolutional-neural-network-cb0883dd6529


Full CNN - illustration

32 × 32 × 3 28 × 28 × 8 14 × 14 × 8 10 × 10 × 16 5 × 5 × 16

400 × 1

120 × 1

84 × 1

10 × 1

ෝ𝒚

𝑓 = 5
𝑠 = 1

𝑓 = 5
𝑠 = 1

𝑓 = 2
𝑠 = 2

𝑓 = 2
𝑠 = 2

CONV1
ReLU

POOL1
max

F
L
A

T
T

E
N

IN
G

input 
image

FC3

ReLU   

fully connected  

Digits recognition

For training we will consider all the parameters
• Filters for convolutions (+ biases)
• Weights and biases for FC

CONV2
ReLU

POOL2
max

FC4

ReLU   
FC5

Softmax   



Activation shape Activation size # parameters

Input image (32, 32, 3) 3,072 -

CONV1 (f=5, s=1, nc =8) (28, 28, 8) 6,272 5x5x3x8+8
608

POOL1 (f=2, s=2) (14, 14, 8) 1,568 -

CONV2 (f=5, s=1, nc =16) (10, 10, 16) 1,600 5x5x8x16+16
3,216

POOL2 (f=2, s=2) (5, 5, 16) 400 -

FC3 (120, 1) 120 120x400+120
48,120

FC4 (84, 1) 84 84x120+84
10,164

FC5
Softmax

(10, 1) 10 10x84+10
850

Even if the activation size in smaller in the FC layers, here the number 
of learning parameters is larger. 

62,958



Convolution vs FC
The advantage of a convolution layer over a FC  

layer is the number of parameters

• Parameters sharing

• Sparsity of the connections

32 × 32 × 3 28 × 28 × 8

𝑓 = 5
𝑠 = 1

conv

input 
image

𝟑, 𝟎𝟕𝟐 𝟔, 𝟐𝟕𝟐

5 × 5 × 3 × 8 + 8

𝟔𝟎𝟖

𝟔, 𝟐𝟕𝟐 × 𝟏

𝟑, 𝟎𝟕𝟐 × 𝟏

6,272 × 3,272 + 6,272

𝟐𝟎, 𝟓𝟐𝟖, 𝟐𝟓𝟔 ≈ 𝟐𝟎, 𝟓𝐌

𝑊, 𝑏FC

𝟔𝟎𝟖 ≪ 𝟐𝟎. 𝟓 𝐌
Training 
parameters



10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

    10    10    10    10   100   100   100   100

-1     0    1

 -1     0    1

 -1     0    1

*

0     0   270   270     0     0

     0     0   270   270     0     0

     0     0   270   270     0     0

     0     0   270   270     0     0

     0     0   270   270     0     0

     0     0   270   270     0     0

=

❖ Parameter sharing: a filter that detects a certain feature (e.g., vertical edges), 
useful in one part of an image most probably is useful in another part of that 
image.

o Highly decreases the training parameters number

❖ Sparsity of connections: in each layer, each output value depends only on a 
small number of inputs – no full connection
o Highly decreases the training parameters number



https://towardsdatascience.com/a-comprehensive-guide-to-
convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Block 
diagram 
of some 
CNNs

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
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Exercise
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