
Elements of Artificial Intelligence G. Oltean

Convolutional
Neural Network

(CNN)

Video: Deep Learning and Traditional Machine Learning:

Choosing the Right Approach

https://www.mathworks.com/videos/ai-for-engineers-building-an-ai-system-1603356830725.html
https://www.mathworks.com/videos/ai-for-engineers-building-an-ai-system-1603356830725.html

Elements of Artificial Intelligence G. Oltean

Why CNN?
If working with simple images, for example MINST data set

▪ 28 x 28 x 1 (b&w; 1 channel) = 784 features

The size of the input layer
in a deep ANN is 784

 – can be manageable.

http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/

Elements of Artificial Intelligence G. Oltean
5 / 20

https://medium.com/intelligentmachines/convolutional-neural-network-and-regularization-techniques-with-tensorflow-and-keras-
5a09e6e65dc7

https://medium.com/intelligentmachines/convolutional-neural-network-and-regularization-techniques-with-tensorflow-and-keras-5a09e6e65dc7
https://medium.com/intelligentmachines/convolutional-neural-network-and-regularization-techniques-with-tensorflow-and-keras-5a09e6e65dc7

Elements of Artificial Intelligence G. Oltean
6 / 20

Big challenge - dimensionality
If working with “real” images
512 x 512 x 3 (3 channels) = 786,432 features

786,432

inputs

1000

hidden

units

layer [1]: W[1] : (1000; 786,432); 786,432,000 – weights + 1000 biases

Way too many training parameters, especially in layer [1]

• Very difficult to get enough data to prevent overfitting

• Computation and memory requirements tend to be infeasible

Is this a lion?

(or a cat, a dog, etc.)

Find a way to use far less parameters for the same problem!

CNN (ConvNet) for deep learning

• CNN – Convolutional Neural Network

❑ A class of deep neural networks, most applied to analyzing
visual imagery.

❑ Applications in image and video recognition, recommender
systems, image classification, medical image analysis, and natural
language processing (NLP), text processing, etc

❖ Little pre-processing compared to other image classification

algorithms.

❖ The network learns the filters that in traditional algorithms were
hand-engineered (features extraction).

✓ This independence from prior knowledge and human effort

in feature design and extraction is a major advantage

CNN (ConvNet) for deep learning

• CNN – Convolutional Neural Network

➢ CNNs eliminate the need for manual feature extraction

▪ no need to identify features used to classify images

➢ The CNN works by extracting features directly from images.

➢ The relevant features are not pretrained; they are learned while

the network trains on a collection of images.

❑ The automated feature extraction makes deep learning models

highly accurate for computer vision tasks such as object

classification/recognition.

CNN (ConvNet) for deep learning

❑ The network employs a mathematical operation called
convolution.

❑ CNN are simply neural networks that use convolution
in place of general matrix multiplication in at least one
of their layers.

❑ CNN have learnable parameter like conventional neural
network (weights, biases, etc.).

❖ Convolution

▪ a specialized kind of linear operation

▪ a mathematical operation on two functions (f and g) that
produces a third function expressing how the shape of one
function (f) is modified by the other function (g).

▪ defined as the integral of the product of the two functions after
one (g) is reversed and shifted.

Let’s think about how we recognize a face.

✓ We can recognize a face because it present a set of features: eyes,
nose, ears, hair, etc.

✓ To decide if an object is a face, we do it as if we had some mental
boxes of verification of the features that we are marking.

➢Sometimes a face may not have an ear (it is covered by hair), but we
still classify it with a certain probability as a face due to the presence
of the other features.

➢Actually, we can see it as a classifier that predicts a probability that
the input image is a face or no face.

Some intuition

❖ In reality, we must first know what an eye or a nose is like:

✓ we must previously identify lines, edges, textures or shapes that are
like those containing the eyes or noses

▪ this is what the layers of a convolutional neuronal network are
entrusted to do.

❖ Identifying these elements is insufficient to say that an object is a face.

❖ We also must identify how the parts of a face meet each other, relative

sizes, etc.; otherwise, the face would not resemble what we are used to.

Some intuition

➢ In a convolutional neural network, each layer is learning different

levels of abstraction.

➢ With networks with many layers, it is possible to identify more

complex structures in the input data.

[Jordi TORRES.AI, Convolutional Neural Networks for Beginners using Keras & TensorFlow 2, Apr 22, 2020,

https://towardsdatascience.com/convolutional-neural-networks-for-beginners-using-keras-and-tensorflow-2-c578f7b3bf25]

https://towardsdatascience.com/convolutional-neural-networks-for-beginners-using-keras-and-tensorflow-2-c578f7b3bf25

Feature detector

Edge detector - where are

the edges? (groups pixels

to form edges)

Take the detected edges; groups

edges together to form part of

faces (eye, nose, chin, etc)

Putting together different

parts of the faces to form

faces

The complexity of the detected function increases (edges => parts of faces => faces)

Simple things Complex things

Very small window Large window

Simple to

complex

hieratical

representation

Pixels

[Andrew Ng, Why deep representation?, https://www.coursera.org/lecture/neural-networks-deep-learning/why-deep-representations-rz9xJ]

Convolutional layers can learn spatial hierarchies of patterns by preserving spatial relationships.

A first convolutional layer can learn basic elements such as edges.

A second convolutional layer can learn patterns composed of basic elements learned in the previous layer.

And so on until it learns very complex patterns.

This allows CNNs to efficiently learn increasingly complex and abstract visual concepts.

https://www.coursera.org/lecture/neural-networks-deep-learning/why-deep-representations-rz9xJ

Elements of Artificial Intelligence G. Oltean

CNNs learn to detect different features of an image using tens or hundreds of hidden layers.

Every hidden layer increases the complexity of the learned image features.

For example, the first hidden layer could learn how to detect edges, and the last learns how to detect
more complex shapes specifically catered to the shape of the object we are trying to recognize.

CNN with many convolutional layers (deep)

Filters are applied to each training image at different resolutions, and the output of each
convolved image serves as the input to the next layer.

[Deep Learning, MathWorks
https://www.mathworks.com/discovery/
deep-learning.html]

https://www.mathworks.com/discovery/deep-learning.html
https://www.mathworks.com/discovery/deep-learning.html

Layers in CNN

https://www.youtube.com/watch?v=Jy9-aGMB_TE

https://www.youtube.com/watch?v=Jy9-aGMB_TE

Elements of Artificial Intelligence G. Oltean

Each neuron in the hidden layer

will be connected to a small

region of 5×5 neurons (i.e. 25

neurons) of the input layer

(28×28).

We can think of a 5×5 size

window that slides along the

entire 28×28 neuron layer of

input that contains the image. For

each position of the window there

is a neuron in the hidden layer

that processes this information.

[Jordi TORRES.AI, Convolutional Neural Networks for Beginners using Keras & TensorFlow 2, Apr 22, 2020,

https://towardsdatascience.com/convolutional-neural-networks-for-beginners-using-keras-and-tensorflow-2-c578f7b3bf25]

The center of the filter (kernel) is aligned with the current pixel and is a

square with an odd number (3, 5, 7, etc.) of elements in each dimension.

E.g. kernel size: 5 x 5

Convolution
Convolution is the process of adding each element (pixel) of the image to its local

neighbors, weighted by a kernel (filter).

https://towardsdatascience.com/convolutional-neural-networks-for-beginners-using-keras-and-tensorflow-2-c578f7b3bf25

Elements of Artificial Intelligence G. Oltean

[Jordi TORRES.AI, Convolutional Neural Networks for Beginners using Keras &

TensorFlow 2, Apr 22, 2020, https://towardsdatascience.com/convolutional-neural-

networks-for-beginners-using-keras-and-tensorflow-2-c578f7b3bf25]

We start with the window in the top left

corner of the image, and this gives the

necessary information for the first neuron

of the hidden layer.

Then, we slide the window one position to

the right (stride =1) to “connect” the 5×5

neurons of the input layer included in this

window with the second neuron of the

hidden layer.

And so, successively, we go through the

entire space of the input layer, from left to

right and top to bottom.

Convolution

For convolution:

25 weights in a W matrix (kernel)

1 bias values

In total 26 parameters.

For a conventional ANN (not fully connected)

14,400 = (24x24) x (5x5) weights in a W matrix

576 = 24 x 24 bias values

In total 14,976 parameters.

Drastically reduces the number of parameters

Each neuron in layer l is connected only with 5x5
neurons in the l-1 layer (as is the case for convolution)

https://towardsdatascience.com/convolutional-neural-networks-for-beginners-using-keras-and-tensorflow-2-c578f7b3bf25
https://towardsdatascience.com/convolutional-neural-networks-for-beginners-using-keras-and-tensorflow-2-c578f7b3bf25

Elements of Artificial Intelligence G. Oltean
17 / 20

Illustration for input size: (5,5); filter (kernel) size: (3,3), stride = (1,1)

Filter (kernel)

(3; 3)

Input

image

(5,5)

Feature

map

(3,3)

* =

Elements of Artificial Intelligence G. Oltean
18 / 20

Convolution – edge (feature) detection in CNN

• To detect edges in complicated images, we may want vertical, horizontal, different

degree edges, or even more complex ones

• It makes almost impossible for a researcher to figure out the most

appropriate filter (that 25 numeric values in a 5 x 5 filter)

• What about learning the filter as parameters (using backpropagation):

𝑤11 𝑤12 𝑤13 𝑤14 𝑤15

𝑤21 𝑤22 𝑤23 𝑤24 𝑤25

𝑤31 𝑤32 𝑤33 𝑤34 𝑤35

𝑤41 𝑤42 𝑤43 𝑤44 𝑤45

𝑤51 𝑤52 𝑤53 𝑤54 𝑤55

• The filter can learn from data to detect (extract) interesting low-level feature from

the input image

• Very powerful idea in computer vision

Convolution layers use different filters to be able to identify different
aspects in an image: edges, corners, body parts (eyes, ear, paw, fur, etc.)
The filters (the weights and biases) are learned during the training process

Elements of Artificial Intelligence G. Oltean

E.g.: using 32 filters (one filter for each characteristic), we can extract

32 different characteristics at once, for the same input layer

[Jordi TORRES.AI, Convolutional Neural

Networks for Beginners using Keras &

TensorFlow 2, Apr 22, 2020,

https://towardsdatascience.com/convolutional-

neural-networks-for-beginners-using-keras-and-

tensorflow-2-c578f7b3bf25]

One filter defined by one matrixW and one bias b only allows detecting a

specific characteristic (one characteristic) in an image.

 To perform image recognition, it is necessary to use several filters at the same

time, to extract several characteristics in the same convolutional layer.

A complete convolutional layer in a convolutional neuronal
network includes several filters.

https://towardsdatascience.com/convolutional-neural-networks-for-beginners-using-keras-and-tensorflow-2-c578f7b3bf25
https://towardsdatascience.com/convolutional-neural-networks-for-beginners-using-keras-and-tensorflow-2-c578f7b3bf25
https://towardsdatascience.com/convolutional-neural-networks-for-beginners-using-keras-and-tensorflow-2-c578f7b3bf25

Elements of Artificial Intelligence G. Oltean
20 / 20

Image filtering is useful for many applications, including smoothing, sharpening,

removing noise, and edge detection.

A filter is defined by a kernel, which is a small array applied to each pixel and its

neighbors within an image.

The center of the kernel is aligned with the current pixel

 - a square with an odd number (3, 5, 7, etc.) of elements in each dimension.

A high pass filter is the basis for most sharpening methods.

An image is sharpened when contrast is enhanced between adjoining areas with

little variation in brightness or darkness.

A high pass filter tends to retain the high frequency information within an image while

reducing the low frequency information.

The kernel of the high pass filter is designed to increase the brightness of the center

pixel relative to neighboring pixels.

The kernel array usually contains a single positive value at its center, which is

surrounded by negative values.

https://northstar-www.dartmouth.edu/doc/idl/html_6.2/Filtering_an_Imagehvr.html

high pass

filters

example:

https://northstar-www.dartmouth.edu/doc/idl/html_6.2/Filtering_an_Imagehvr.html

Elements of Artificial Intelligence G. Oltean

1 0 0

0 2 0

1 2 0

26

1 2 3

4 5 6

7 8 9∗ =

Convolution /

Cross correlation
Image matrix

(function) f

Filter matrix

(function) g

For convolution, the initial filter matrix (g) is initially flipped vertically and horizontally

1 0 0

0 2 0

1 2 0

7 8 9

4 5 6

1 2 3

9 8 7

6 5 4

3 2 1

9*1+8*0+7*0+

6*0+5*2+4*0+

3*1+2*2+1*0 = 26

1 2 3

4 5 6

7 8 9

For cross-correlation, the initial filter matrix (g) is used as it is

34

1 2 3

4 5 6

7 8 9* =

1 0 0

0 2 0

1 2 0

1*1+2*0+3*0+

4*0+5*2+6*0+

7*1+8*2+9*0 = 34

By convention in machine learning /deep learning we will

use the term convolution for cross-correlation.

Elements of Artificial Intelligence G. Oltean
22 / 20

Convolution – vertical edge detection

10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

-1 0 1

 -1 0 1

 -1 0 1
*

0 0 270 270 0 0

 0 0 270 270 0 0

 0 0 270 270 0 0

 0 0 270 270 0 0

 0 0 270 270 0 0

 0 0 270 270 0 0

=

Original image

(8, 8)

Filter (kernel)

(3, 3)

Output image

(6, 6)

(𝑛, 𝑛) (𝑓, 𝑓)
(𝒏 − 𝒇 + 𝟏, 𝒏 − 𝒇 + 𝟏)

Dimensions

(8, 8) (3, 3)
(8 − 3 + 1, 8 − 3 + 1)

(6, 6)

At each edge of the original image,
𝑓

2
− 0.5 pixels are lost.

In total 2 ∙
𝑓

2
− 0.5 , meaning 𝒇 − 𝟏 pixels are lost, on each dimension.

Elements of Artificial Intelligence G. Oltean
23 / 20

Convolution – vertical edge detection

Original image

(128, 128)

Filter (kernel)

(3, 3)

Output image

(126, 126)

-1 0 1

 -1 0 1

 -1 0 1
* =

Dark to light transition

Elements of Artificial Intelligence G. Oltean
24 / 20

Convolution – vertical edge detection

Original image

(256, 256)

Filter (kernel)

(3, 3)

Output image

(254, 254)

-1 0 1

 -1 0 1

 -1 0 1
* =

dark to light; light to dark transitions

on the horizontal direction

Elements of Artificial Intelligence G. Oltean
25 / 20

C
o
n

v
o
lu

ti
o
n

 –
 v

er
ti

ca
l

ed
g
e

d
et

ec
ti

o
n

10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

-1 0 1

 -1 0 1

 -1 0 1
*

0 0 270 270 0 0

 0 0 270 270 0 0

 0 0 270 270 0 0

 0 0 270 270 0 0

 0 0 270 270 0 0

 0 0 270 270 0 0

=

10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

-1 0 1

 -2 0 2

 -1 0 1
*

0 0 360 360 0 0

 0 0 360 360 0 0

 0 0 360 360 0 0

 0 0 360 360 0 0

 0 0 360 360 0 0

 0 0 360 360 0 0

=

10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

-3 0 3

-10 0 10

 -3 0 3
*

0 0 1440 1440 0 0

 0 0 1440 1440 0 0

 0 0 1440 1440 0 0

 0 0 1440 1440 0 0

 0 0 1440 1440 0 0

 0 0 1440 1440 0 0

=

Sobel

Scharr

Elements of Artificial Intelligence G. Oltean
26 / 20

Convolution – horizontal edge detection

10 10 10 10 10 10 10 10

 10 10 10 10 10 10 10 10

 10 10 10 10 10 10 10 10

 10 10 10 10 10 10 10 10

 100 100 100 100 100 100 100 100

 100 100 100 100 100 100 100 100

 100 100 100 100 100 100 100 100

 100 100 100 100 100 100 100 100

-1 -1 -1

 0 0 0

 1 1 1
*

0 0 0 0 0 0

 0 0 0 0 0 0

 270 270 270 270 270 270

 270 270 270 270 270 270

 0 0 0 0 0 0

 0 0 0 0 0 0

=

Original image

(8, 8)

Filter (kernel)

(3, 3)

Output image

(6, 6)

no padding

dark to light; light to dark transitions

on the vertical direction

Elements of Artificial Intelligence G. Oltean
27 / 20

Convolution – horizontal edge detection

Original image

(128, 128)

Filter (kernel)

(3, 3)

Output image

(126, 126)

no padding

* =

Dark to light transition

-1 -1 -1

 0 0 0

 1 1 1

Elements of Artificial Intelligence G. Oltean

* =

Sharpening
filter

0 -1 0

-1 5 -1

0 -1 0

stride = 1

Adjust the
contrast of
the image by
applying
Histogram
Equalization

Elements of Artificial Intelligence G. Oltean

* =

Edge detection
filter

-1 -1 -1

-1 8 -1

-1 -1 -1

stride = 1

Elements of Artificial Intelligence G. Oltean

* =

Edge detection
filter

-1 0 +1

-2 0 +2

-1 0 +1

Sobel; horizontal
changes

(vertical edges)

stride = 1

Elements of Artificial Intelligence G. Oltean

Convolution
http://machinelearninguru.com/computer_vision/basics/co
nvolution/image_convolution_1.html

105*0 + 102*(-1) + 100*0 +
103*(-1) + 99*5 + 103*(-1) +
101*0 + 98*(-1) + 104*0 =
89

Sharpening
filter (kernel)

Sharpening an image increases the contrast
between bright and dark regions to bring out
features.

The sharpening process is basically the
application of a high pass filter to an image.

f g

f * g :

Element-wise

multiplication

and addition

http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html
http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html

http://machinelearninguru
.com/computer_vision/bas
ics/convolution/image_con
volution_1.html

?

http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html
http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html
http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html
http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html

http://machinelearninguru
.com/computer_vision/bas
ics/convolution/image_con
volution_1.html

http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html
http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html
http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html
http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html

http://machinelearninguru
.com/computer_vision/bas
ics/convolution/image_con
volution_1.html

?

?

Pixels on
the border
of image
matrix?

http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html
http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html
http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html
http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html

http://machinelearninguru.com/
computer_vision/basics/convolut
ion/image_convolution_1.html

(1 pixel padding
here, all around)

The process of
adding zeros to the
input matrix
symmetrically to
maintain the
dimension of
output as in input.

Padding depends
on the dimension
of the filter.

http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html
http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html
http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_1.html

Elements of Artificial Intelligence G. Oltean

36 / 20

Padding – padded convolution

* =
(𝒏, 𝒏) (𝒇, 𝒇)

(𝒏 − 𝒇 + 𝟏, 𝒏 − 𝒇 + 𝟏)

(𝟖, 𝟖) (𝟑, 𝟑)
(𝟖 − 𝟑 + 𝟏, 𝟖 − 𝟑 + 𝟏)

(𝟔, 𝟔)

0 0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0 0

* =
(𝒏, 𝒏) (𝒇, 𝒇)

(𝒏 + 𝟐𝒑 − 𝒇 + 𝟏, 𝒏 + 𝟐𝒑 − 𝒇 + 𝟏)

(𝟖, 𝟖) (𝟑, 𝟑)
(𝟖 + 𝟐 − 𝟑 + 𝟏, 𝟖 + 𝟐 − 𝟑 + 𝟏)

(𝟖, 𝟖)

𝒑 = 𝟏

Valid convolution – no padding, the image is shrinking

Same convolution – padding, the size is the same

𝒑 = 𝟎

Elements of Artificial Intelligence G. Oltean
37 / 20

Padding – padded convolution

Same convolution

• padding,

• the size of the feature map is the same with the size of the

input image.

Compute the necessary padding size, p =?

𝒏 + 𝟐𝒑 − 𝒇 + 𝟏 = 𝒏

𝒑 =
𝒇 − 𝟏

𝟐

Odd number for the filter size (3, 5, 7) is recommended.

There is a center of the filter, so one can talk about the position of the filter.

Elements of Artificial Intelligence G. Oltean

38 / 20

Illustration for input size: (5,5); filter size: (3,3), stride = (1,1)

Stride denotes how many steps we are moving in
each steps in convolution.

Usually, it is s = 1
stride = amount you

move the window each

time you slide

Filter

(3; 3)

Input image

(5,5)

Feature map

(3,3)

* =

Elements of Artificial Intelligence G. Oltean
39 / 20

Size of the output image (feature map)

* =
Input: (n; n), (5; 5)

Filter: (f; f) (3; 3)

Padding: p = 0

Stride: s = 2

Output: (2; 2)

𝒏 + 𝟐𝒑 − 𝒇

𝒔
+ 𝟏 ;

𝒏 + 𝟐𝒑 − 𝒇

𝒔
+ 𝟏

𝟓 + 𝟐 ∙ 𝟎 − 𝟑

𝟐
+ 𝟏 ;

𝟓 + 𝟐 ∙ 𝟎 − 𝟑

𝟐
+ 𝟏

𝟐; 𝟐

𝒏 + 𝟐𝒑 − 𝒇

𝒔
+ 𝟏

 rounded down (floor)

Elements of Artificial Intelligence G. Oltean
40 / 20

Convolution over volume
Convolution over a RGB input image

3 input channels

*
=

*
=

(6, 6, 3) (3, 3, 3) (4, 4)

3 x 3 x 3 = 27 weights

(height, width, channels)

Each convolution

over volume

produces one 2D

output

n = 6

f = 3

p = 0

s = 1

Elements of Artificial Intelligence G. Oltean
41 / 20

* =

* =

* =

* =

Convolution over volume - multichannel

1 3D input image; 4 3D filters; 4 2D output images

3 input channels; 4 output channels

We can extract multiple features

(using multiple filters) in one step

Horizontal

edges on all

channels

Vertical edges

on green

channel

73 degrees

edges

…………

3 input channels

6x6x3 = 108 pixels

4 output channels

In case of 128 3D filters;

128 output channels

4x4x128 = 2048 values

output (4 channels)

4x4x4 = 64 numbers

Elements of Artificial Intelligence G. Oltean

http://cs231n.github.io/
convolutional-networks/

filter 0 filter 1

output

channel 0

output

channel 1

3 input channels; 2 3D filters, 2 output channels

n = 5, f=3, p =1, s =2

output channel size:

𝑛+2𝑝−𝑓

𝑠
+ 1 =

5+2∙1−3

2
+ 1 =3

Illustration

for

multichannel

convolution

http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/

Elements of Artificial Intelligence G. Oltean

http://cs231n.github.io/
convolutional-networks/

Applying K=2 different 3D filters (W0 and W1)
Will generate 2 output channels

filter 0 filter 1

output

channel 0

output

channel 1

3 input channels; 2 3D filters, 2 output channels

n = 5, f=3, p =1, s =2

output channel size:

𝑛+2𝑝−𝑓

𝑠
+ 1 =

5+2∙1−3

2
+ 1 =3

Illustration

for

multichannel

convolution

http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/

ReLU layer
Once the feature map is
extracted by the convolution,
the next operation is to apply
the ReLU activation function

s

y

𝑦 = max(0, 𝑠)

https://www.youtube.com/watch?v=Jy9-aGMB_TE

https://www.youtube.com/watch?v=Jy9-aGMB_TE

Input image

Input feature map Rectified feature map

Input image is scanned in multiple convolution and ReLU layers

. . .

. . .

Convolution
Multiple filters

ReLU

First 5 columns and rows of the input image matrix:

 [[33.6861 21.462 22.3216 32.8946 29.1734]
 [62.8323 38.6861 21.462 15.7388 12.1618]
 [53.7622 55.191 50.8323 39.2553 27.7504]
 [67.3392 79.3392 74.3372 57.8323 47.2553]
 [85.2028 79.8441 50.8421 29.3314 34.8323]]

First 5 columns and rows of the image sharpen matrix:

 [[84.1362 12.3258 36.2923 95.4401 78.5729]
 [188.1617 33.9352 -19.8438 -29.4384 -28.3799]
 [80.8206 54.1131 63.916 44.8381 15.6216]
 [121.9746 116.2651 133.6276 98.9823 78.1111]
 [196.6922 98.347 8.774 -31.7601 18.4111]]

First 5 columns and rows of the image sharpen+ReLU matrix:

 [[84.1362 12.3258 36.2923 95.4401 78.5729]
 [188.1617 33.9352 0. 0. 0.]
 [80.8206 54.1131 63.916 44.8381 15.6216]
 [121.9746 116.2651 133.6276 98.9823 78.1111]
 [196.6922 98.347 8.774 0. 18.4111]]

Convolution + ReLU – one layer operation

*
=

*
=

*
=

… …

+𝑏1 ReLU

+𝑏2 ReLU

+𝑏
𝑛𝑐

𝑙
 ReLU

…

=

=

=

Layer [𝒍]Input

𝑛𝑐
[𝑙−1]

 input channels

𝑛𝐻
[𝑙−1]

× 𝑛𝑊
[𝑙−1]

× 𝑛𝑐
[𝑙−1]

Output

𝑛𝑐
[𝑙]

 output channels

𝑛𝐻
[𝑙]

× 𝑛𝑊
[𝑙]

× 𝑛𝑐
[𝑙]

𝑎 𝑙 = 𝑔 𝑙 𝑧 𝑙

𝑧 𝑙 = 𝑊 𝑙 𝑎 𝑙−1 + 𝑏 𝑙

𝑊 𝑙 𝑊 𝑙 𝑎 𝑙−1𝑎 𝑙−1 𝑧 𝑙

𝑎 𝑙 = 𝑔 𝑙 𝑧 𝑙

Forward propagation

…

Filters (𝑛𝑐
[𝑙]

)

𝑓 𝑙 × 𝑓 𝑙 × 𝑛𝑐
[𝑙−1]

CNN – one layer.

Parameters

Hyperparameters

𝑊: 𝑓 𝑙 × 𝑓 𝑙 × 𝑛𝑐
𝑙−1

× 𝑛𝑐
𝑙

𝑛𝑐
𝑙
 one scalar for each filter𝑏:

𝑓 𝑙 = 3 filter size

𝑛𝑐
𝑙−1

= 3 number of input channel

𝑛𝑐
𝑙

= 16 number of filters (output channel)

3 × 3 × 3 × 16 + 16 = 448 parameters in layer [𝑙]

No matter how big the input (image) is,
the number of parameters is the same.

Hyperparameters

𝑓 𝑙 filter size

𝑛𝑐
𝑙
 number of filters (output channels)

𝑠 𝑙 stride

𝑝 𝑙 padding

Convolution

+ ReLU

𝑠 𝑙 stride

𝑝 𝑙 padding

𝑛𝑊
𝑙

=
𝑛𝑊

𝑙−1
+ 2𝑝 𝑙 − 𝑓 𝑙

𝑠 𝑙
+ 1 𝑛𝐻

𝑙
=

𝑛𝐻
𝑙−1

+ 2𝑝 𝑙 − 𝑓 𝑙

𝑠 𝑙
+ 1

Input 𝑎 𝑙−1
 : 𝑛𝐻

[𝑙−1]
× 𝑛𝑊

[𝑙−1]
× 𝑛𝑐

[𝑙−1]

Output 𝑎 𝑙
 : 𝑛𝐻

[𝑙]
× 𝑛𝑊

[𝑙]
× 𝑛𝑐

[𝑙]

Vectorized for m examples (batch)

Input 𝐴 𝑙−1
 : 𝑚 × 𝑛𝐻

[𝑙−1]
× 𝑛𝑊

[𝑙−1]
× 𝑛𝑐

[𝑙−1]

Output 𝐴 𝑙
 : 𝑚 × 𝑛𝐻

[𝑙]
× 𝑛𝑊

[𝑙]
× 𝑛𝑐

[𝑙]

Simple Convolutional Neural Network (ConvNet)

𝑎 0 𝑎 1 𝑎 2 𝑎 3

𝑓 1 = 3

𝑠 1 = 1

𝑝 1 = 0

𝑛𝑐
1

 = 8

[1]

64 × 64 × 3 62 × 62 × 8

𝑛𝑊
𝑙

=
𝑛𝑊

𝑙−1
+ 2𝑝 𝑙 − 𝑓 𝑙

𝑠 𝑙
+ 1 𝑛𝐻

𝑙
=

𝑛𝐻
𝑙−1

+ 2𝑝 𝑙 − 𝑓 𝑙

𝑠 𝑙
+ 1

𝑓 2 = 5

𝑠 2 = 2

𝑝 2 = 0

𝑛𝑐
2

 = 16

[2]

29 × 29 × 16

𝑓 3 = 7

𝑠 3 = 2

𝑝 2 = 0

𝑛𝑐
2

 = 32

[3]

12 × 12 × 32

CONV CONV CONV

• image size stays almost the same in the beginning, then slightly decreases
• number of channels (filters) increases

Pooling layer
Once the feature map is rectified by the ReLU activation function, the next
operation is to down-sampling the images to reduce the dimensionality
through a pooling layer

0 0 14 82

149 32 0 0

28 53 64 44

39 120 133 99

Rectified feature map

149 82

120 133

max pooling

2 x 2 filter
stride 2 Pooled feature map

4 x 4 = 16 2 x 2 = 4

Dimensionality reduction (given by the filter size and stride):

4 to 1; 4 times

Dimensionality reduction for 2x2 filter and stride 1?

Max pooling – how valuable is a feature in the area of the filter
▪ best (maximum feature value)

Elements of Artificial Intelligence G. Oltean

14
9

32 31 0

11
1

200 20 135

28 53 20 64

39 120 210 13

149 32 31 0 0

111 200 20 135 10

28 53 20 64 44

39 120 210 13 99

Pooling layer

0 0 25 14 82

149 32 31 0 0

111 200 20 135 10

28 53 20 64 44

39 120 210 13 99

Rectified feature map

200 200 135

200 200 135

210 210 210

max pooling

3 x 3 filter; f = 3
stride 1; s = 1

Pooled feature map

𝑛𝐻 × 𝑛𝑊 × 𝑛𝑐

𝑛𝐻 − 𝑓

𝑠
+ 1 ×

𝑛𝑊 − 𝑓

𝑠
+ 1 × 𝑛𝑐

Apply on each channel independently

No parameters to learn

Hyperparameters: f, s

Average pooling is (very) rarely used

Flattening

Once the dimensionality of the data volume is reduced to a
manageable size, we must connect further with the fully
connected (FC) layer.

We need to convert the pooled feature map to a column vector
using the flattening operation

149 82

120 133

Pooled feature map

Flattening
149

82

120

133

3 6

9 12

2 5

8 11

1 4

7 10

1

2

3

4

5

6

7

8

9

10

11

12

[[[1 2 3]
 [4 5 6]]

[[7 8 9]
[10 11 12]]]

[1 2 3 4 5 6 7 8 9 10 11 12]

Flattening

Fully connected layer

The vector (flattened 2D array) from the pooling layer is fed to
the fully connected layer (conventional feed-forward ANN) to
classify the image

Fully connected layer

Plion

Pgiraffe

Pbird

https://www.youtube.com/watch?v=Jy9-aGMB_TE

https://www.youtube.com/watch?v=Jy9-aGMB_TE

Elements of Artificial Intelligence G. Oltean
57 / 20

In deep learning, the term logits layer is popularly used for the last neuron layer of neural network for

classification task which produces raw prediction values as real numbers ranging from [-infinity, +infinity].

Before activation take place.

Softmax acts as an activation function, and it turns logits (numeric output of the last linear layer of a multi-

class classification neural network) into probabilities by taking the exponents of each output and then

normalizing each number by the sum of those exponents.

Softmax activation function (used in CNN)

So, the entire output vector adds up to one — all probabilities should add up to one.

Cross entropy loss is usually the loss function for such a multi-class classification problem.

Softmax is frequently appended to the last layer of a multi-class image classification
network such as those in CNN (Alexnet, VGG16, etc.) used in ImageNet competitions.

 [Understand the Softmax Function in Minutes, January 2018, https://medium.com/data-science-bootcamp/understand-the-
softmax-function-in-minutes-f3a59641e86d]

5.0
6.0

1.0

2.0

0.2641

0.7179

0.0048

0.0131

(s)

𝒇 𝒔𝒊 =
𝒆𝒔𝒊

σ𝒋 𝒆𝒔𝒋

lion

bear

bird

giraffe

Plion

Pbear

Pgiraffe

Pbird

Feature extraction Classification

https://towardsdatascience.com/covolutional-neural-network-cb0883dd6529 Adaptation after:

CNN – big picture

https://towardsdatascience.com/covolutional-neural-network-cb0883dd6529

Full CNN - illustration

32 × 32 × 3 28 × 28 × 8 14 × 14 × 8 10 × 10 × 16 5 × 5 × 16

400 × 1

120 × 1

84 × 1

10 × 1

ෝ𝒚

𝑓 = 5
𝑠 = 1

𝑓 = 5
𝑠 = 1

𝑓 = 2
𝑠 = 2

𝑓 = 2
𝑠 = 2

CONV1
ReLU

POOL1
max

F
L
A

T
T

E
N

IN
G

input
image

FC3

ReLU

fully connected

Digits recognition

For training we will consider all the parameters
• Filters for convolutions (+ biases)
• Weights and biases for FC

CONV2
ReLU

POOL2
max

FC4

ReLU
FC5

Softmax

Activation shape Activation size # parameters

Input image (32, 32, 3) 3,072 -

CONV1 (f=5, s=1, nc =8) (28, 28, 8) 6,272 5x5x3x8+8
608

POOL1 (f=2, s=2) (14, 14, 8) 1,568 -

CONV2 (f=5, s=1, nc =16) (10, 10, 16) 1,600 5x5x8x16+16
3,216

POOL2 (f=2, s=2) (5, 5, 16) 400 -

FC3 (120, 1) 120 120x400+120
48,120

FC4 (84, 1) 84 84x120+84
10,164

FC5
Softmax

(10, 1) 10 10x84+10
850

Even if the activation size in smaller in the FC layers, here the number
of learning parameters is larger.

62,958

Convolution vs FC
The advantage of a convolution layer over a FC

layer is the number of parameters

• Parameters sharing

• Sparsity of the connections

32 × 32 × 3 28 × 28 × 8

𝑓 = 5
𝑠 = 1

conv

input
image

𝟑, 𝟎𝟕𝟐 𝟔, 𝟐𝟕𝟐

5 × 5 × 3 × 8 + 8

𝟔𝟎𝟖

𝟔, 𝟐𝟕𝟐 × 𝟏

𝟑, 𝟎𝟕𝟐 × 𝟏

6,272 × 3,272 + 6,272

𝟐𝟎, 𝟓𝟐𝟖, 𝟐𝟓𝟔 ≈ 𝟐𝟎, 𝟓𝐌

𝑊, 𝑏FC

𝟔𝟎𝟖 ≪ 𝟐𝟎. 𝟓 𝐌
Training
parameters

10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

 10 10 10 10 100 100 100 100

-1 0 1

 -1 0 1

 -1 0 1

*

0 0 270 270 0 0

 0 0 270 270 0 0

 0 0 270 270 0 0

 0 0 270 270 0 0

 0 0 270 270 0 0

 0 0 270 270 0 0

=

❖ Parameter sharing: a filter that detects a certain feature (e.g., vertical edges),
useful in one part of an image most probably is useful in another part of that
image.

o Highly decreases the training parameters number

❖ Sparsity of connections: in each layer, each output value depends only on a
small number of inputs – no full connection
o Highly decreases the training parameters number

https://towardsdatascience.com/a-comprehensive-guide-to-
convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Block
diagram
of some
CNNs

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Elements of Artificial Intelligence G. Oltean
66 / 20

Exercise

Elements of Artificial Intelligence G. Oltean
67 / 20

	Slide 1: Convolutional Neural Network (CNN)
	Slide 4: Why CNN?
	Slide 5
	Slide 6: Big challenge - dimensionality
	Slide 7: CNN (ConvNet) for deep learning
	Slide 8: CNN (ConvNet) for deep learning
	Slide 9: CNN (ConvNet) for deep learning
	Slide 10: Some intuition
	Slide 11: Some intuition
	Slide 12
	Slide 13
	Slide 14: Layers in CNN
	Slide 15: Convolution
	Slide 16: Convolution
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Convolution
	Slide 32: Convolution
	Slide 33: Convolution
	Slide 34: Convolution
	Slide 35: Convolution
	Slide 36
	Slide 37
	Slide 38: Convolution
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 45: ReLU layer
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52: Pooling layer
	Slide 53: Pooling layer
	Slide 54: Flattening
	Slide 55
	Slide 56: Fully connected layer
	Slide 57
	Slide 58: CNN – big picture
	Slide 59: Full CNN - illustration
	Slide 60
	Slide 61: Convolution vs FC
	Slide 62
	Slide 63
	Slide 66: Exercise
	Slide 67

