
G. Oltean

Improving Deep Neural
Networks

[SHUBHAM JAIN, An Overview of Regularization Techniques in
Deep Learning (with Python code), APRIL 19, 2018,

https://www.analyticsvidhya.com/blog/2018/04/fundamentals
-deep-learning-regularization-techniques/]

[DeepLearning.AI, Improving Deep Neural Networks:
Hyperparameter tuning, Regularization and Optimization,
https://www.coursera.org/learn/deep-neural-
network/home/welcome]

➢Data set split

➢Regularization

➢Hyperparameter tuning

➢Optimization

https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://www.coursera.org/learn/deep-neural-network/home/welcome
https://www.coursera.org/learn/deep-neural-network/home/welcome

G. Oltean

Machine learning – intensive iterative process

Idea
Layers

Hidden units

Learning rates

Activation function

Epochs

Batch

…

How efficiently can you

go round this cycle?

G. Oltean

Train / Val /Test split
Train Val Test

Data

Train set: used to learn the parameters of the model

Val set (validation set): supervises the learning generality (identify
overfitting);
Used to rank different models in terms of their accuracy (decide which
models to proceed further with); parameter choice and model choice

Test set: used as a proxy for unseen data and evaluate our model on test-
set (brand-new data set)

Size of training/val/test split

Small / moderate data set:
• 70% / 20% /10%

Big data set:
Val set ~ 1000 – 10000 example; Test set ~ 100 – 1000 example

https://snji-khjuria.medium.com/everything-you-need-to-know-about-train-dev-test-split-what-how-and-why-6ca17ea6f35

https://snji-khjuria.medium.com/everything-you-need-to-know-about-train-dev-test-split-what-how-and-why-6ca17ea6f35

G. Oltean

Bias / Variance2D data; binary classifier

Same model can present high bias

in one region and high variance in

another region !

Train set error: 1% 14 % 14% 0.6%

Val set error: 12% 15 % 21% 0.9%

High variance Low variance

High bias

High variance

High bias

Low variance

Low bias

G. Oltean

Basic recipe
for ML model
development

Training a bigger network almost never hurts.

Main cost of training a neural network that's too big is just computational time,

so long as you're regularizing (to avoid overfitting).

G. Oltean
6 / 20

One of the most common problem data science

professionals face is avoiding overfitting

The model

• exceptionally well on training data,

• quite poorly on validation data

• not able to make accurate predictions on

test data

The model tries to learn too well the details and noise from the training data

Poor performance on the other data (validation/test data)

The complexity of the model increases

Training error decreases Validation / testing error increases

[SHUBHAM JAIN, An Overview of Regularization Techniques in Deep Learning (with Python code), APRIL 19, 2018, https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/]

Overfitting

Validation/ Test

Set

Training

Set

Training vs. Validation / Test Set Error

https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/

G. Oltean
7 / 20

Regularization

➢Avoiding overfitting can single-handedly improve our

model’s performance

Regularization is a technique which makes slight modifications to the learning
algorithm such that the model generalizes better.

✓ This in turn improves the model’s performance on the new (unseen) data

In machine learning, regularization penalizes the coefficients.

In deep learning, it actually penalizes the weight matrices of the nodes.

Validation/ Test

Set

Training

Set

Training vs. Validation / Test Set Error

G. Oltean
8 / 20

➢ When you decrease the number of training parameters you
usually get a lot of benefits such as smaller model making them
fit into memory easier.

➢However, that usually lowers the performance.

➢ So, the main challenge is

➢decrease the number of parameters without lowering the
performance.

A huge regularization effect on small images would cause
underfitting and a small regularization effect on large images
would cause overfitting.

Mostafa Ibrahim, Google releases EfficientNetV2 — a smaller, faster, and better EfficientNet, Apr 3 2021,
https://towardsdatascience.com/google-releases-efficientnetv2-a-smaller-faster-and-better-efficientnet-
673a77bdd43c

Regularization

https://towardsdatascience.com/google-releases-efficientnetv2-a-smaller-faster-and-better-efficientnet-673a77bdd43c
https://towardsdatascience.com/google-releases-efficientnetv2-a-smaller-faster-and-better-efficientnet-673a77bdd43c

G. Oltean
9 / 20

L2 & L1 regularization
If neural network is overfitting the data (high variance):

• regularization
• get more training data (can't always get more training data / could be expensive to get

more data

Adding regularization often help to prevent overfitting / reduce the errors in the NN

Adding L2 / L1 penalty term:

cost_r = cost + penalty term

 L2 regularization cost_r = cost +
𝜆

2𝑚
σ 𝑤 2

 L1 regularization cost_r = cost +
𝜆

2𝑚
σ 𝑤

 𝜆 – the regularization parameter

L2 regularization is also known as weight decay as it forces the weights to decay
towards zero (but never zero).

For L1 regularization the weights may be reduced to zero.

Cost function

must be

minimized

G. Oltean
10 / 20

Logistic regression

L2 & L1 regularization

𝑠 = 𝑤𝑇 𝑥 + 𝑏 ො𝑦 = 𝑓 𝑠

ො𝑦 = 𝑓 𝑤𝑇𝑥 + 𝑏

Euclidean norm
L2 regularization – 2nd order

L1 regularization – 1st order

L1 regularization:

G. Oltean
11 / 20

Neural network

L2 regularization

Frobenius norm (sum of squares of elements of a matrix)

Cost cross-entropy cost regularization cost

G. Oltean
12 / 20

Neural network - L2 regularization GDA implementation

❑ Without regularization

❑ With regularization

Weight decay

• the coefficient in front of w[l] < 1

G. Oltean

Why

L2 regularization

reduces overfitting?

(intuition)

Why does this term

reduce overfitting?

The w weights are stimulated to become very small (close to zero), to minimize J

wij ~ 0 for a lot of hidden neurons
This highly simplified neural network (much

smaller neural network) will take us from the
overfitting case closer to the underfitting case (for
large λ).

Hopefully, there will be an intermediate value of λ
that leads toward just right case.

We can think of it as zeroing out or at least
reducing the impact of a lot of the hidden units
(especially the least significative weights).

Variance reduction

G. Oltean

Why

L2 regularization

reduces overfitting?

(intuition) – cont.

We are entering a narrow, almost linear region of the transfer function

This happens for all neurons, in all layers.

So, the NN decreases its degree of nonlinearity, approaching linearity and it

cannot fit a verry complicated (highly non-linear) decision boundary

 overfitting can hardly happen

G. Oltean
15 / 20

L2-regularization relies on the assumption that a model with small weights is

simpler than a model with large weights.

Thus, by penalizing the square values of the weights in the cost function you

drive all the weights to smaller values.

It becomes too costly for the cost function to have large weights!

This leads to a smoother model in which the output changes more slowly as the

input changes.

Observations:

• The value of λ is a hyperparameter that you can tune.

• L2 regularization makes your decision boundary smoother. If λ is too

large, it is also possible to "over-smooth", resulting in a model with high

bias.

G. Oltean
16 / 20

In keras (python), we can directly apply regularization to any layer

Sample code to apply L2 regularization to a Dense layer.

from keras import regularizers

model.add(Dense(64, input_dim=64,
 kernel_regularizer=regularizers.l2(l2 = 0.01)

0.01 is the value of
regularization
parameter, i.e., lambda.

from keras import regularizers

model.add(Dense(64, input_dim=64,
 kernel_regularizer=regularizers.l1(l1 = 0.01)

Sample code to apply L1 regularization to a Dense layer.

G. Oltean
18 / 20

Dropout
regularization

At every iteration, dropout

regularization randomly selects

some nodes and removes them

along with all their incoming and

outgoing weights.

You end up with a much smaller,

much diminished network.

Then you do back propagation training

on this much diminished network.

G. Oltean
19 / 20

Dropout regularization
Each training epoch has a different set of nodes and this results in a different
set of outputs.
It can also be thought of as an ensemble technique in machine learning.

Ensemble models usually perform better than a single model as they capture more
randomness.
Similarly, dropout also performs better than a normal neural network model.

The probability of choosing how many nodes should be dropped is the
hyperparameter of the dropout function.

Dropout can be applied to both the hidden layers as well as the input layers.

Dropout is usually preferred when we have a large neural network structure
in order to introduce more randomness.

The dropped neurons don't contribute to the training in both the forward and

backward propagations of the current training epoch.

In each training epoch, only a part of the network weights are updated (those

not connected to shut-down neurons), so that the possibility of overfitting

(learning by heart the training data set) is considerably diminished.

At each epoch, you shut down (= set to zero) each neuron of a layer with a certain
probability (keep_prob)

G. Oltean
20 / 20

Keras - Dropout layer Dropout class

tf.keras.layers.Dropout(rate, noise_shape=None, seed=None, **kwargs)

The Dropout layer randomly sets units to 0 with a frequency of rate at each step
during training time, which helps prevent overfitting.

Inputs not set to 0 are scaled up by 1/(1 - rate) such that the sum over all inputs is
unchanged (inverted dropout).

Note that the Dropout layer only applies when training is set to True such that no
values are dropped during inference.

[https://keras.io/api/layers/regularization_layers/dropout/]

hyperparameter

When you shut some neurons down, you actually modify your model.

The idea behind dropout is that at each iteration, you train a different

model that uses only a subset of your neurons.

With dropout, your neurons thus become less sensitive to the activation of

another specific neuron, because that other neuron might be shut down at any

time.

Dropout is inactive at inference time.
The trained network contains all neurons

https://keras.io/api/layers/regularization_layers/dropout/

G. Oltean
23 / 20

Other regularization techniques

Early stopping

Rather than using early stopping, one alternative is just use L2
regularization, then you can just train the neural network as long as possible.

The downside of this: you might have to try a lot of values of the
regularization parameter lambda. This makes searching over many values of
lambda more computationally expensive.

The advantage of early stopping is that running
the gradient descent process just once, you get
to try out values of small w, mid-size w,
and large w, without needing to try a lot of
values of the L2 regularization hyperparameter
lambda.

G. Oltean
24 / 20

Other regularization techniques - Early stopping

Keras - EarlyStopping

tf.keras.callbacks.EarlyStopping(
 monitor="val_loss",
 min_delta=0,
 patience=0,
 verbose=0,
 mode="auto",
 baseline=None,
 restore_best_weights=False,
)

Stop training when a monitored metric has stopped improving.

Assuming the goal of a training is to minimize the loss. With this,
the metric to be monitored would be 'loss', and mode would be
'min’.

A model.fit() training loop will check at end of every
epoch whether the loss is no longer decreasing,
considering the min_delta and patience if applicable.

Once it's found no longer decreasing,
model.stop_training is marked True and the training
terminates.

EarlyStopping class

>>> callback = tf.keras.callbacks.EarlyStopping(monitor='loss', patience=3)
>>> # This callback will stop the training when there is no improvement in
>>> # the loss for three consecutive epochs.
>>> model = tf.keras.models.Sequential([tf.keras.layers.Dense(10)])
>>> model.compile(tf.keras.optimizers.SGD(), loss='mse')
>>> history = model.fit(np.arange(100).reshape(5, 20), np.zeros(5),
... epochs=10, batch_size=1, callbacks=[callback],
... verbose=0)
>>> len(history.history['loss']) # Only 4 epochs are run.
4

https://keras.io/api/callbacks/early_stopping/

https://keras.io/api/callbacks/early_stopping/

G. Oltean
25 / 20

Setting up the

optimization problem

• Data normalization

• Network (weights) initialization

G. Oltean
26 / 20

Normalizing inputs

Initial dataset Subtract mean (zero out the mean) Normalize the variance

Use the same 𝝁, 𝝈 to normalize all data sets

✓ Training

✓ Validation

✓ Test

G. Oltean
27 / 20

w w

Unnormalized

Very low learning rate, a

lot of steps

Normalized

Go straight to the minima

J is easier and faster to optimize

[DeepLearning.AI, Improving Deep Neural Networks: Hyperparameter tuning, Regularization
and Optimization, https://www.coursera.org/learn/deep-neural-network/home/welcome]

Why normalization?

https://www.coursera.org/learn/deep-neural-network/home/welcome

G. Oltean
28 / 20

In deep networks, error gradients can accumulate during an update and result in very large

gradients. The explosion occurs through exponential growth by repeatedly multiplying

gradients through the network layers that have values larger than 1.0.

These in turn result in large updates to the network weights, and in turn, an unstable network.

At an extreme, the values of weights can become so large as to overflow and result in NaN

values.

When n hidden layers use an activation that give small gradients (below unity, like the

sigmoid function), n small derivatives are multiplied together. Thus, the error gradient

decreases exponentially as we propagate down to the initial layers.

A small gradient means that the weights and biases of the initial layers will not be updated

effectively with each training session. Since these initial layers are often crucial to

recognizing the core elements of the input data, it can lead to overall inaccuracy of the whole

network.

(Very) Deep neural network have a major setback
 ⵙ vanishing gradient ⵙ exploding gradient

Exploding gradient

Vanishing gradient

Vanishing / exploding gradients – network initialization

G. Oltean
29 / 20

Vanishing / exploding gradients – network initialization

Partial solution – careful choice of the random initialization of the

network (initial weights)

W[l] = np.random.randn(n[l], n[l-1])*np.sqrt
𝑐𝑠𝑡

𝑛 𝑙−1

standard normal distribution
(mean = 0, standard deviation = 1) Introduces a variance that depends on the

number of input features for the layer

Can be seen as a hyperparameter to be
tuned

cst = 2 for ReLU activation function

cst = 1 for tanh activation function

Hopefully, that makes the weights not explode too
quickly and not decay to zero too quickly, so you can
train a reasonably deep network without the weights or
the gradients exploding or vanishing too much.

G. Oltean
30 / 20

Setting a DNN –recommended exercise

http://playground.tensorflow.org/#activation=relu®ularization=L2&batchSize=5&dataset=xor®Dataset=reg-
gauss&learningRate=0.03®ularizationRate=0.001&noise=20&networkShape=2&seed=0.93433&showTestData=false&discretize=true
&percTrainData=70&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&
collectStats=false&problem=classification&initZero=false&hideText=false

Overfitting and regularization - recommended reading

http://neuralnetworksanddeeplearning.com/chap3.html#overfitting_and_regularization

Augmentation, L2 regularization, dropout implementation –
recommended programimg exercise

https://colab.research.google.com/drive/1moK2cq2SSgJLB68uNyvjyrGQKjwh8hKU?usp=sharing

To download the dataset:

https://drive.google.com/drive/folders/10HMkJbgl0XVtxGngP7NS1uWM9LbgrGez?usp=sharing

http://neuralnetworksanddeeplearning.com/chap3.html#overfitting_and_regularization
https://colab.research.google.com/drive/1moK2cq2SSgJLB68uNyvjyrGQKjwh8hKU?usp=sharing
https://drive.google.com/drive/folders/10HMkJbgl0XVtxGngP7NS1uWM9LbgrGez?usp=sharing
https://drive.google.com/drive/folders/10HMkJbgl0XVtxGngP7NS1uWM9LbgrGez?usp=sharing

G. Oltean
31 / 20

Tuning process
The processes that drive performance and generate
good results systematically

Hyperparameters:

• Learning rate – most important

• Learning rate decay

• Mini-batch size

• Momentum term; hyperparameters of the optimization algorithms

• Number of layers

• Number of hidden units

Set regularization method and params

	Slide 1: Improving Deep Neural Networks
	Slide 2: Machine learning – intensive iterative process
	Slide 3: Train / Val /Test split
	Slide 4: Bias / Variance
	Slide 5: Basic recipe for ML model development
	Slide 6: Overfitting
	Slide 7: Regularization
	Slide 8: Regularization
	Slide 9: L2 & L1 regularization
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 18: Dropout regularization
	Slide 19: Dropout regularization
	Slide 20
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

