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Improving Deep Neural 
Networks

[SHUBHAM JAIN, An Overview of Regularization Techniques in 
Deep Learning (with Python code), APRIL 19, 2018, 

https://www.analyticsvidhya.com/blog/2018/04/fundamentals
-deep-learning-regularization-techniques/] 

[DeepLearning.AI, Improving Deep Neural Networks: 
Hyperparameter tuning, Regularization and Optimization, 
https://www.coursera.org/learn/deep-neural-
network/home/welcome] 

➢Data set split

➢Regularization

➢Hyperparameter tuning

➢Optimization

https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
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G. Oltean 

Machine learning – intensive iterative process

Idea
Layers

Hidden units

Learning rates

Activation function

Epochs

Batch

…

How efficiently can you 

go round this cycle?
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Train / Val /Test split
Train                                              Val Test

Data

Train set:  used to learn the parameters of the model

Val set (validation set):  supervises the learning generality (identify 
overfitting); 
Used to rank different models in terms of their accuracy (decide which 
models to proceed further with);  parameter choice and model choice 

Test set: used as a proxy for unseen data and evaluate our model on test-
set (brand-new data set)

Size of training/val/test split

Small / moderate data set:   
• 70% / 20% /10%

Big data set: 
Val set   ~ 1000 – 10000 example;  Test set ~ 100 – 1000 example

https://snji-khjuria.medium.com/everything-you-need-to-know-about-train-dev-test-split-what-how-and-why-6ca17ea6f35 

https://snji-khjuria.medium.com/everything-you-need-to-know-about-train-dev-test-split-what-how-and-why-6ca17ea6f35
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Bias / Variance2D data; binary classifier

Same model can present high bias 

in one region and high variance in 

another region !

Train set error:         1%                     14 %                      14%                 0.6%

Val  set error:          12%                     15 %                       21%                0.9%

High variance Low variance

High bias

High variance

High bias

Low variance

Low bias
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Basic recipe 
for ML model 
development

Training a bigger network almost never hurts.

Main cost of training a neural network that's too big is just computational time, 

so long as you're regularizing (to avoid overfitting).
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One of the most common problem data science 

professionals face is avoiding overfitting
 

The model

• exceptionally well on training data, 

• quite poorly on validation data

• not able to make accurate predictions on 

test data

The model tries to learn too well the details and noise from the training data

Poor performance on the other data (validation/test data)

The complexity of the model increases

Training error decreases      Validation / testing error increases

[SHUBHAM JAIN, An Overview of Regularization Techniques in Deep Learning (with Python code), APRIL 19, 2018, https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/] 

Overfitting

Validation/ Test 

Set 

Training 

Set 

Training vs. Validation / Test Set Error

https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
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Regularization

➢Avoiding overfitting can single-handedly improve our 

model’s performance

Regularization is a technique which makes slight modifications to the learning 
algorithm such that the model generalizes better. 

✓ This in turn improves the model’s performance on the new (unseen) data 

In machine learning, regularization penalizes the coefficients. 

In deep learning, it actually penalizes the weight matrices of the nodes.

Validation/ Test 

Set 

Training 

Set 

Training vs. Validation / Test Set Error
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➢ When you decrease the number of training parameters you 
usually get a lot of benefits such as smaller model making them 
fit into memory easier. 

➢However, that usually lowers the performance. 

➢ So, the main challenge is 

➢decrease the number of parameters without lowering the 
performance.

A huge regularization effect on small images would cause 
underfitting and a small regularization effect on large images 
would cause overfitting.

Mostafa Ibrahim, Google releases EfficientNetV2 — a smaller, faster, and better EfficientNet, Apr 3 2021, 
https://towardsdatascience.com/google-releases-efficientnetv2-a-smaller-faster-and-better-efficientnet-
673a77bdd43c 

Regularization

https://towardsdatascience.com/google-releases-efficientnetv2-a-smaller-faster-and-better-efficientnet-673a77bdd43c
https://towardsdatascience.com/google-releases-efficientnetv2-a-smaller-faster-and-better-efficientnet-673a77bdd43c
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L2 & L1 regularization
If neural network is overfitting the data (high variance):

• regularization
• get more training data (can't always get more training data / could be expensive to get 

more data

Adding regularization often help to prevent overfitting / reduce the errors in the NN

Adding L2 / L1 penalty term:

cost_r = cost + penalty term

 L2 regularization cost_r = cost +
𝜆 

2𝑚
σ 𝑤 2

 L1 regularization            cost_r = cost +
𝜆 

2𝑚
σ 𝑤

  

 𝜆 – the regularization parameter

L2 regularization is also known as weight decay as it forces the weights to decay 
towards zero (but never zero).

For L1 regularization the weights may be reduced to zero.

Cost function 

must be 

minimized
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Logistic regression 

L2 & L1 regularization

𝑠 = 𝑤𝑇 𝑥 + 𝑏 ො𝑦 = 𝑓 𝑠        

ො𝑦 = 𝑓 𝑤𝑇𝑥 + 𝑏        

Euclidean norm
L2 regularization – 2nd order

L1 regularization – 1st order

L1 regularization:  
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Neural network

L2 regularization

Frobenius norm (sum of squares of elements of a matrix)

Cost                                 cross-entropy cost            regularization cost
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Neural network  -  L2 regularization    GDA implementation

❑  Without regularization

❑  With regularization

Weight decay

• the coefficient in front of w[l]  < 1
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Why 

L2 regularization 

reduces overfitting?

(intuition)

Why does this term 

reduce overfitting?

The w weights are stimulated to become very small (close to zero), to minimize J 

wij ~ 0 for a lot of hidden neurons
This highly simplified neural network (much 

smaller neural network) will take us from the 
overfitting case closer to the underfitting case (for 
large λ).

Hopefully, there will be an intermediate value of λ 
that leads toward just right case.

We can think of it as zeroing out or at least 
reducing the impact of a lot of the hidden units 
(especially the least significative weights).

Variance reduction 



G. Oltean 

Why 

L2 regularization 

reduces overfitting?

(intuition) – cont. 

We are entering a narrow, almost linear region of the transfer function

This happens for all neurons, in all layers. 

So, the NN decreases its degree of nonlinearity, approaching linearity and it 

cannot fit a verry complicated (highly non-linear) decision boundary

                              overfitting can hardly happen



G. Oltean 
15 / 20

L2-regularization relies on the assumption that a model with small weights is 

simpler than a model with large weights. 

Thus, by penalizing the square values of the weights in the cost function you 

drive all the weights to smaller values. 

It becomes too costly for the cost function to have large weights! 

This leads to a smoother model in which the output changes more slowly as the 

input changes.

Observations:

• The value of λ is a hyperparameter that you can tune.

• L2 regularization makes your decision boundary smoother. If λ is too 

large, it is also possible to "over-smooth", resulting in a model with high 

bias.
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In keras (python), we can directly apply regularization to any layer

Sample code to apply L2 regularization to a Dense layer.

from keras import regularizers

model.add(Dense(64, input_dim=64,
                          kernel_regularizer=regularizers.l2(l2 = 0.01)

0.01 is the value of 
regularization 
parameter, i.e., lambda.

from keras import regularizers

model.add(Dense(64, input_dim=64,
                          kernel_regularizer=regularizers.l1(l1 = 0.01)

Sample code to apply L1 regularization to a Dense layer.
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Dropout 
regularization

At every iteration, dropout 

regularization randomly selects 

some nodes and removes them 

along with all their incoming and 

outgoing weights.

You end up with a much smaller, 

much diminished network.

Then you do back propagation training 

on this much diminished network.
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Dropout regularization
Each training epoch has a different set of nodes and this results in a different 
set of outputs.
It can also be thought of as an ensemble technique in machine learning.

Ensemble models usually perform better than a single model as they capture more 
randomness. 
Similarly, dropout also performs better than a normal neural network model.

The probability of choosing how many nodes should be dropped is the 
hyperparameter of the dropout function. 

Dropout can be applied to both the hidden layers as well as the input layers.

Dropout is usually preferred when we have a large neural network structure 
in order to introduce more randomness.

The dropped neurons don't contribute to the training in both the forward and 

backward propagations of the current training epoch.

In each training epoch, only a part of the network weights are updated (those 

not connected to shut-down neurons), so that the possibility of overfitting 

(learning by heart the training data set) is considerably diminished.

At each epoch, you shut down (= set to zero) each neuron of a layer with a certain 
probability (keep_prob)
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Keras - Dropout layer Dropout class

tf.keras.layers.Dropout(rate, noise_shape=None, seed=None, **kwargs)

The Dropout layer randomly sets units to 0 with a frequency of rate at each step 
during training time, which helps prevent overfitting. 

Inputs not set to 0 are scaled up by 1/(1 - rate) such that the sum over all inputs is 
unchanged (inverted dropout).

Note that the Dropout layer only applies when training is set to True such that no 
values are dropped during inference.

[https://keras.io/api/layers/regularization_layers/dropout/]

hyperparameter

When you shut some neurons down, you actually modify your model. 

The idea behind dropout is that at each iteration, you train a different 

model that uses only a subset of your neurons. 

With dropout, your neurons thus become less sensitive to the activation of 

another specific neuron, because that other neuron might be shut down at any 

time.

Dropout is inactive at inference time.
The trained network contains all neurons

https://keras.io/api/layers/regularization_layers/dropout/
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Other regularization techniques  

Early stopping

Rather than using early stopping, one alternative is just use L2 
regularization, then you can just train the neural network as long as possible.

The downside of this: you might have to try a lot of values of  the 
regularization parameter lambda. This makes searching over many values of 
lambda more computationally expensive.

The advantage of early stopping is that running 
the gradient descent process just once, you get 
to try out values of small w, mid-size w, 
and large w, without needing to try a lot of 
values of the L2 regularization hyperparameter 
lambda.
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Other regularization techniques - Early stopping

Keras - EarlyStopping

tf.keras.callbacks.EarlyStopping(
    monitor="val_loss",
    min_delta=0,
    patience=0,
    verbose=0,
    mode="auto",
    baseline=None,
    restore_best_weights=False,
)

Stop training when a monitored metric has stopped improving.

Assuming the goal of a training is to minimize the loss. With this, 
the metric to be monitored would be 'loss', and mode would be 
'min’. 

A model.fit() training loop will check at end of every 
epoch whether the loss is no longer decreasing, 
considering the min_delta and patience if applicable. 

Once it's found no longer decreasing, 
model.stop_training is marked True and the training 
terminates.

EarlyStopping class

>>> callback = tf.keras.callbacks.EarlyStopping(monitor='loss', patience=3)
>>> # This callback will stop the training when there is no improvement in  
>>> # the loss for three consecutive epochs.  
>>> model = tf.keras.models.Sequential([tf.keras.layers.Dense(10)])
>>> model.compile(tf.keras.optimizers.SGD(), loss='mse')
>>> history = model.fit(np.arange(100).reshape(5, 20), np.zeros(5),
...                     epochs=10, batch_size=1, callbacks=[callback],
...                     verbose=0)
>>> len(history.history['loss'])  # Only 4 epochs are run.
4

https://keras.io/api/callbacks/early_stopping/

https://keras.io/api/callbacks/early_stopping/
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Setting up the 

optimization problem

• Data normalization

• Network (weights) initialization
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Normalizing inputs

Initial dataset Subtract mean (zero out the mean) Normalize the variance

Use the same 𝝁, 𝝈  to normalize all data sets

✓ Training

✓ Validation

✓ Test
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w w

Unnormalized

Very low learning rate, a 

lot of steps

Normalized

Go straight to the minima

J is easier and faster to optimize

[DeepLearning.AI, Improving Deep Neural Networks: Hyperparameter tuning, Regularization 
and Optimization, https://www.coursera.org/learn/deep-neural-network/home/welcome] 

Why normalization?

https://www.coursera.org/learn/deep-neural-network/home/welcome
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In deep networks, error gradients can accumulate during an update and result in very large 

gradients. The explosion occurs through exponential growth by repeatedly multiplying 

gradients through the network layers that have values larger than 1.0.

These in turn result in large updates to the network weights, and in turn, an unstable network. 

At an extreme, the values of weights can become so large as to overflow and result in NaN 

values.

When n hidden layers use an activation that give small gradients (below unity, like the 

sigmoid function), n small derivatives are multiplied together. Thus, the error gradient 

decreases exponentially as we propagate down to the initial layers.

A small gradient means that the weights and biases of the initial layers will not be updated 

effectively with each training session. Since these initial layers are often crucial to 

recognizing the core elements of the input data, it can lead to overall inaccuracy of the whole 

network.

(Very) Deep neural network have a major setback 
                        ⵙ vanishing gradient            ⵙ  exploding gradient

Exploding gradient

Vanishing gradient 

Vanishing / exploding gradients – network initialization
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Vanishing / exploding gradients – network initialization

Partial solution – careful choice of the random initialization of the 

network (initial weights)

W[l] = np.random.randn(n[l], n[l-1])*np.sqrt
𝑐𝑠𝑡

𝑛 𝑙−1

standard normal distribution 
(mean = 0, standard deviation = 1) Introduces a variance that depends on the 

number of input features for the layer 

Can be seen as a hyperparameter to be 
tuned

cst = 2 for    ReLU activation function

cst = 1 for    tanh  activation function 

Hopefully, that makes the weights not explode too 
quickly and not decay to zero too quickly, so you can
train a reasonably deep network without the weights or 
the gradients exploding or vanishing too much.
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Setting a DNN –recommended exercise

http://playground.tensorflow.org/#activation=relu&regularization=L2&batchSize=5&dataset=xor&regDataset=reg-
gauss&learningRate=0.03&regularizationRate=0.001&noise=20&networkShape=2&seed=0.93433&showTestData=false&discretize=true
&percTrainData=70&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&
collectStats=false&problem=classification&initZero=false&hideText=false

Overfitting and regularization - recommended reading

http://neuralnetworksanddeeplearning.com/chap3.html#overfitting_and_regularization

Augmentation, L2 regularization, dropout implementation –
recommended programimg exercise

https://colab.research.google.com/drive/1moK2cq2SSgJLB68uNyvjyrGQKjwh8hKU?usp=sharing

To download the dataset: 

https://drive.google.com/drive/folders/10HMkJbgl0XVtxGngP7NS1uWM9LbgrGez?usp=sharing

http://neuralnetworksanddeeplearning.com/chap3.html#overfitting_and_regularization
https://colab.research.google.com/drive/1moK2cq2SSgJLB68uNyvjyrGQKjwh8hKU?usp=sharing
https://drive.google.com/drive/folders/10HMkJbgl0XVtxGngP7NS1uWM9LbgrGez?usp=sharing
https://drive.google.com/drive/folders/10HMkJbgl0XVtxGngP7NS1uWM9LbgrGez?usp=sharing
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Tuning process
The processes that drive performance and generate 
good results systematically

Hyperparameters:

• Learning rate – most important 

• Learning rate decay

• Mini-batch size

• Momentum term; hyperparameters of the optimization algorithms

• Number of layers

• Number of hidden units

Set regularization method and params
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