
G. OlteanElements of Artificial Intelligence

CNN
Practical advice

Use open-source implementation

Transfer learning

Data augmentation

G. OlteanElements of Artificial Intelligence

2 / 20

Use open-source implementation

❑ CNN can be difficult or finicky to replicate

• Tuning, hyperparameters, etc

➢ Look for open-source license implementation

• Much faster

➢ Use GitHub (download / clone)

➢ The CNNs in open-source implementation are usually already

trained (download the code and the weights)

• Need lots of time and computer resources (multiple GPUs)

for training

➢ Contribute back with your code

G. OlteanElements of Artificial Intelligence

Transfer learning

➢ To solve a new problem, we may use a pre-trained model of a similar problem.

➢ Instead of building a model from scratch to solve the new problem, we may use
the model trained on other similar problem as a starting point.

❖ Rather than training the weights from scratch, from random initialization, we often make

much faster progress if we download weights (from open source) that someone else has

already trained on the network architecture and use that as pre-training and transfer that to

our new task.

Sometimes these training can take several weeks and might take many GPUs.

[Andrew Ng, Transfer Learning, https://www.coursera.org/learn/convolutional-neural-networks/lecture/4THzO/transfer-learning]

Transfer learning is not a machine learning model or technique;

it is rather a design methodology.

The general idea of transfer learning is to use knowledge learned from tasks
for which a lot of labelled data is available in settings where only little
labelled data is available.
Creating labelled data is expensive, so optimally leveraging existing datasets
is key.

https://www.coursera.org/learn/convolutional-neural-networks/lecture/4THzO/transfer-learning

G. OlteanElements of Artificial Intelligence

4 / 20

Transfer learning is usually done for tasks where your dataset has too little data to

train a full-scale model from scratch.

The most common workflow of transfer learning in the context of deep learning:

1. Take layers from a previously trained model.

2. Freeze them, to avoid destroying any of the information they contain during

future training rounds.

3. Add some new, trainable layers on top of the frozen layers. They will learn to

turn the old features into predictions on a new dataset.

4. Train the new layers on your dataset.

A last, optional step, is fine-tuning, which consists of:

1. Unfreezing the entire model you obtained above (or part of it)

2. Re-training it on the new data with a very low learning rate.

This can potentially achieve meaningful improvements, by incrementally adapting

the pretrained features to the new data.

François Chollet, Transfer learning & fine-tuning, 2020/05/12, https://keras.io/guides/transfer_learning/

https://keras.io/guides/transfer_learning/

G. OlteanElements of Artificial Intelligence

5 / 20

Pretty small training set

softmax

ො𝑦 20 classes

softmax

ො𝑦 3 classes

𝑥

freeze
train

The top layers that are trained will use the pre-trained weight as initialization

Because all early layers are frozen, there are some fixed functions that doesn't change.

You can take an input image x and map it to a set of activations in last frozen layer.

The trick that could speed up training is to just pre-compute the activations of that layer and save them to disk using

that fixed function in the first part of the neural network.

Take as input any image x and compute the feature vector for it and then you will train a shallow softmax model

from this feature vector to make a prediction.

Pre-compute that layer activation, for all the examples in training sets and save them to disk and then just train the

softmax classifier right on top of that.

The advantage of the save to disk or to pre-compute method is that you don't need to

recompute those activations every time you take a training epoch.

Fixed functions

G. OlteanElements of Artificial Intelligence

6 / 20

Fixed functions

Pre-compute the feature vectors for the last layer, for all the examples in training sets,

and save them to the disk

softmax

ො𝑦 3 classes

Train only the softmax layer (shallow network)

G. OlteanElements of Artificial Intelligence

7 / 20

Larger training set

softmax

ො𝑦 20 classes

softmax

ො𝑦 3 classes

𝑥

freeze train train
can even be replaced

by new ones

Very large training set

softmax

ො𝑦 20 classes

softmax

ො𝑦 3 classes

𝑥

train train

G. OlteanElements of Artificial Intelligence

8 / 20

Bastien Maurice , Deeply Learning, 11 septembre 2018,
https://deeplylearning.fr/cours-theoriques-deep-learning/transfer-learning/

https://deeplylearning.fr/cours-theoriques-deep-learning/transfer-learning/

G. OlteanElements of Artificial Intelligence

10 / 20

Data augmentation
Deep Learning sometimes may run into problem where data has limited size (e.g. overfitting).

To get better generalization in the model we need more data and as much variation possible in

the data.

Sometimes, dataset is not big enough to capture enough variation, in such cases we need

to generate more data from given dataset.

That is where Data augmentation can play a very important role.

Original image Mirroring (flip)

Random cropping

RotationShearing

Local warping

G. OlteanElements of Artificial Intelligence

12 / 20

Data augmentation – cont.

Original image

Color shifting

Noise injection

https://www.photopea.com

G. OlteanElements of Artificial Intelligence

15 / 20

Use Keras
preprocessing layers

Resizing and rescaling

tf_flowers dataset

Use preprocessing layers to resize images to a consistent shape, and to rescale pixel values.

IMG_SIZE = 180
resize_and_rescale = tf.keras.Sequential([
 layers.experimental.preprocessing.Resizing(IMG_SIZE,
IMG_SIZE),
 layers.experimental.preprocessing.Rescaling(1./255)
])

https://www.tensorflow.org/datasets/catalog/tf_flowers
https://www.tensorflow.org/api_docs/python/tf/keras/layers/experimental/preprocessing/Resizing
https://www.tensorflow.org/api_docs/python/tf/keras/layers/experimental/preprocessing/Rescaling

G. OlteanElements of Artificial Intelligence

16 / 20

Data augmentation Use preprocessing layers for data augmentation

data_augmentation = tf.keras.Sequential([
 layers.experimental.preprocessing.RandomFlip("horizontal_and_vertical"),
 layers.experimental.preprocessing.RandomRotation(0.2),

])

for i in range(9):
 augmented_image = data_augmentation(image)
 ax = plt.subplot(3, 3, i + 1)
 plt.imshow(augmented_image[0])
 plt.axis("off")

G. OlteanElements of Artificial Intelligence

17 / 20

There are two ways you can use these preprocessing layers, with important tradeoffs.

Option 1: Make the preprocessing layers part of your model

model = tf.keras.Sequential([
 resize_and_rescale,
 data_augmentation,
 layers.Conv2D(16, 3, padding='same', activation='relu'),
 layers.MaxPooling2D(),
 # Rest of your model
])

Note: Data augmentation is inactive at test time so input images will only be
augmented during calls to model.fit (not model.evaluate or model.predict).

Option 2: Apply the preprocessing layers to your dataset

aug_ds = train_ds.map(
 lambda x, y: (resize_and_rescale(x, training=True), y))

Note: data augmentation should only be applied to the training set.

	Slide 1: CNN Practical advice
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 10
	Slide 12
	Slide 15
	Slide 16
	Slide 17

