
Real Time Vehicle Counting

using

YOLO-Tiny

Real-time vehicle detection, tracking, and counting from surveillance cameras are

the main parts of many applications in smart cities.

Usually, this task encounters some problems in practice, like the lack of real-time

processing of the videos or the errors in detection and/or tracking.

Tiny YOLO for detection and

fast motion estimation for tracking.

The application is running in Ubuntu with GPU processing.

Experimental results show that the approach achieves high accuracy at real-time

speed (33 FPS) on real traffic videos (real-time operation).

Next step: running on a low-budget device, as Jetson Nano.

Experimental results: ~ 10 FPS using an IP camera.

Ubuntu OS, GeForce GTX 950M

YOLO v3-Tiny

~ 33 FPS using a movie

Linux4Tegra (Ubuntu 18.04), 128-

Core Nvidia Maxwell

YOLO v3-Tiny

~ 10-13 FPS using an IP camera

Original video frame

Processed video frame

• Convolutional Neural Network (CNN) for
detection, localization and classification

• Python application for frame preprocessing,
tracking and counting

• Computer / Jetson Nano implementation

Considering the pre-trained models provided by the YOLO web site, due to

the real time demands of our application we chose to use YOLOv3-tiny

version.

YOLOv3-tiny assure the proper balance between accuracy and speed.

YOLOv3 is more accurate but too slow for real time processing, even on GPU.

We solve the accuracy problem of YOLOv3-tiny by the fact that every

vehicle is for sure detected in at least one of the frames (passing through the

active ROI).

Once we detect a vehicle in the current frame, we track it by checking if it

appears detected in the next frames, or, if not detected, we estimate its position

in the frame taking in account its last positions, velocity and direction of

movement.

Application
flowchart

RVB - Registered Vehicle Buffer

ROI - Region Of Interest

Vehicles: car, truck, bus

YOLO-Tiny predicts bounding boxes using anchor boxes and

multi-label classification, therefore, for the same object we

can have different bounding boxes detected, or we can have

the same object classified in two different classes (with

different scores).

If in the current frame a vehicle is detected twice, we filter

the resulted bounding boxes to obtain unique identified

vehicle

 All the vehicles from the ROI of the current frame are stored

in theRVB

At each frame we check if a detected vehicle is already

registered in RVB. If not registered, it is a new vehicle, so we

register it in RVB and count it.

If the vehicle is already registered, we update the information

about vehicle position and movement.

If a registered vehicle is not detected in the current frame, we

keep the vehicle in RVB, and predict its future position at the

most likely position, considering just the previous positions

and its dynamic average movement.

The motion estimation is done after each ROI processing. We

consider all the present vehicle and estimate the most likely position

in the next frame, considering just the previous positions and its

dynamic average movement.

 When we are checking if the detected vehicle is registered, we

consider the minimal distance of this vehicle to all vehicles in RVB.

 The distance is computed considering the estimated location of

vehicles for the current frame, not the real location where the vehicles

were at the previous frame detection. If we detect that the current

vehicle is already in the RVB we update the vehicle information,

modifying the estimated location with the real one.

We update the average vehicle movement for a more accurate

prediction in the next frame.

 The vehicle detection, correct prediction, tracking and

counting is maintained as the vehicles moves on the road.

Results

Demonstration and results

Movie

JSON file

https://drive.google.com/file/d/1YrYxnkVfURqKvRDKrvi62aYEvfr_mgeH/view?usp=sharing
https://drive.google.com/file/d/15W_KKcaQEXTYFZ8b_KkGgUjdEfafKMg0/view?usp=sharing

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Application flowchart
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

