
RNN

Recurrent Neural Network

Artificial neural network that are able to recognize and

predict sequences of data such as text, genomes,
handwriting, spoken word, or numerical time series data.

They have loops that allow a consistent flow of
information and can work on sequences of arbitrary
lengths.

Make use of internal state (memory) to process a
sequence of inputs.

https://heartbeat.fritz.ai/a-beginners-guide-to-implementing-long-
short-term-memory-networks-lstm-eb7a2ff09a27

https://heartbeat.fritz.ai/a-beginners-guide-to-implementing-long-short-term-memory-networks-lstm-eb7a2ff09a27
https://heartbeat.fritz.ai/a-beginners-guide-to-implementing-long-short-term-memory-networks-lstm-eb7a2ff09a27

RNNs are used to solve several problems:

• Language translation and modeling

• Speech recognition

• Image captioning

• Time series data such as stock prices (tell when to buy or sell)

• Automatic (autonomous?) driving systems to anticipate car
trajectories; help avoid accidents.

https://heartbeat.fritz.ai/a-beginners-guide-to-implementing-long-
short-term-memory-networks-lstm-eb7a2ff09a27

https://heartbeat.fritz.ai/a-beginners-guide-to-implementing-long-short-term-memory-networks-lstm-eb7a2ff09a27
https://heartbeat.fritz.ai/a-beginners-guide-to-implementing-long-short-term-memory-networks-lstm-eb7a2ff09a27

RNN structure

https://adventuresinmachinelearning.com/recurrent-neural-networks-
lstm-tutorial-tensorflow/

The output of the
hidden layer is fed
back into the same
hidden layer

We can model time or
sequence-dependent
data (time series)

The weights of the connections between time steps are shared i.e.
there isn’t a different set of weights for each time step.

𝑎1
𝑡 𝑎2

𝑡 𝑎3
𝑡

𝑎𝑡−1

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/
https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

at

xt

delay
F

at-1

U
V

RNN structure

𝑎𝑡 = 𝐹 𝑈 𝑥𝑡 + 𝑉 𝑎𝑡−1

cu
rr

en
t

o
u

tp
u

t

ac
ti

va
ti

o
n

 f
u

n
ct

io
n

w
ei

gh
t

m
at

ri
x

fo
r

in
p

u
t

cu
rr

en
t

in
p

u
t

w
ei

gh
t

m
at

ri
x

fo
r

re
cu

rr
en

t
o

u
tp

u
t

re
cu

rr
en

t
o

u
tp

u
t

Example“A girl walked into a bar, and she said: ‘Can I have a drink please?’.

The bartender said ‘Certainly {?}”

{?} can be “miss”, “ma’am”, …

“sir”, “Mister”, … also could fit

To get the correct gender of the noun, the neural network needs to recall that two
previous words designating the likely gender (i.e., “girl” and “she”) were used.

Unrolled RNNRNN

Serial-to- parallel conversion of data sequence
to supply a stream of data to the RNN

https://adventuresinmachinelearning.com/recurrent-neural-
networks-lstm-tutorial-tensorflow/

𝑎𝑡 𝑎0 𝑎1 𝑎2 𝑎𝑡

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/
https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

many-to-one model

inputs: “A girl walked into a bar…”
outputs (predicted): h0 to ht.

many-to-many model

one-to-many model

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

𝑎𝑡 𝑎0 𝑎1 𝑎2 𝑎𝑡

𝑎𝑡

𝑎0 𝑎1 𝑎2 𝑎𝑡

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

Basic RNN - critical analyses

For RNN, ideally, we would want to have long memories (many
time steps), so the network can connect data relationships at
significant distances in time.
An RNN with long memory could make real progress in
understanding how language and narrative work, how stock
market events are correlated, etc.

The more time steps we have, the more chance we have of
back-propagation error gradients:

• accumulating and exploding
• vanishing down to nothing

RNNs present a major setback
o vanishing gradient / exploding gradient

They have difficulties in learning long-range dependencies
(relationship between entities that are several steps apart).

But

8 / 20

Forward and backward propagation for a DNN

In deep networks or recurrent neural networks, error gradients can accumulate

during an update and result in very large gradients.

The explosion occurs through exponential growth by repeatedly multiplying

gradients through the network layers that have values larger than 1.0.

These in turn result in large updates to the network weights, and in turn, an

unstable network.

At an extreme, the values of weights can become so large as to overflow and result

in NaN values.

When n hidden layers use an activation that give small gradients (below unity, like

the sigmoid function), n small derivatives are multiplied together. Thus, the error

gradient decreases exponentially as we propagate down to the initial layers.

A small gradient means that the weights and biases of the initial layers will not be

updated effectively with each training session. Since these initial layers are often

crucial to recognizing the core elements of the input data, it can lead to overall

inaccuracy of the whole network.

Basic RNN - critical analyses – cont.

𝑎2 = 𝐹 𝑈2𝑥2 + 𝑉2 𝐹 𝑈1𝑥1 + 𝑉1 𝐹 𝑈0𝑥0

For back-propagation we compute the gradients of the activation function

The problem with the sigmoid-type activation
function occurs when the input values are such
that the output is close to either 0 or 1:
• the gradient is very small

Multiplying many sigmoid gradients: → 0
Vanishing gradients

Basic RNN -
critical analyses

Solution: LSTM neural network

U0

V1

U1 U2

V2

𝑎0 𝑎1 𝑎2

LSTM network
• LSTM - Long Short-Term Memory

To reduce the vanishing/exploding gradient problem, reduce the
multiplication of gradients.

The LSTM cell is a specifically designed unit of logic that will help reduce
the gradient problem sufficiently to make recurrent neural networks
more useful for long-term memory tasks i.e. text sequence predictions.

The way it does so is by creating an internal memory state which is
simply added to the processed input, which greatly reduces the
multiplicative effect of small gradients.

The time dependence and effects of previous inputs are controlled by
an interesting concept called a forget gate, which determines which
states are remembered or forgotten.

Two other gates, the input gate and output gate, are also featured in
LSTM cells.

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

LSTM cell structure

xt and at-1 concatenated together enters the top “data rail”

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

current
input

recurrent
output

𝒂𝒕−𝟏

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

tanh

𝜎
sigmoid

g

i

The input gate acts as a filter determining which inputs (through g) are

switched on and off (i – between 0 and 1)

g and i - multiplied element-wise (g o i) giving the output of the input stage

U - weight matrix for input
V - weight matrix for recurrent output

𝒂𝒕−𝟏

a

a

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

g

i f

The forget-gate: “filtered” state is simply added to the input, rather than
multiplied by it, or mixed with it via weights and a sigmoid activation function as
occurs in a standard recurrent neural network.

This is important to reduce the issue of vanishing gradients.

Forget gate is a sigmoid activated set of nodes which is element-wise multiplied by st-1

to determine which previous states should be
▪ remembered (i.e. forget gate output close to 1)
▪ forgotten (i.e. forget gate output close to 0).

𝒂𝒕−𝟏

self-reccurent

a

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

tanh

sigmoid

g

i f

The output gate has two components

• tanh squashing function
• output sigmoid gating function.

The output sigmoid gating function determine which values of the state are output from the
cell (values of the output gate close to 1).

o

The LSTM cell is very flexible, with gating functions controlling

✓ what is taken as input,

✓ what is “remembered” in the internal state variable,

✓ what is output from the LSTM cell.

a

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

Case study

• Implement a time series analysis using a

RNN (LSTM) to predict the prices of Bitcoin
using historical data from CryptoDataDownload

Python, TensorFlow

Colaboratory

http://www.cryptodatadownload.com/

Application
flowchart

Uses
TensorFlow

. csv

Original data
Close values

Standardize features - normalization

Standardize features by removing the mean and scaling to unit variance. The
standard score of a sample x is calculated as:

z = (x - u) / s

 u is the mean of the training samples
 s is the standard deviation of the training samples.

Centering and scaling happen independently on each feature by computing the
relevant statistics on the samples in the training set.

Mean and standard deviation are then stored to be used on later data using
transform.

Standardization of a dataset is a common requirement for many machine learning
estimators: they might behave badly if the individual features do not more or less
look like standard normally distributed data (e.g. Gaussian with 0 mean and unit
variance).

Standardized data

Defining the network

Hyperparameters

Hyperparameters explain higher-level structural information about the RNN
model.

batch_size = 64; This is the number of windows of data we are passing at once.

window_size = 7; The number of previous days we consider to predict the bitcoin
price for our case.

hidden_layers = 3; (LSTM units: 256, 512, 512)

clip_margin = 4; This is to prevent exploding the gradient (to clip gradients below/
above this margin).

learning_rate = 0.00005

epochs = 500; This is the number of iterations (forward and back propagation)
our model needs to make.

[[-1.09307145]

[-1.09270821]

[-1.09247866]

[-1.09167145]

[-1.09215073]

[-1.09154532]

[-1.09078856]

[-1.09021847]

[-1.08807683]

[-1.08587718]

[-1.08688872]

[-1.08587214]

[-1.08597052]

[-1.08608655]

[-1.08476222]

[-1.08392726]

[-1.08271645]

[-1.08161158]

[-1.08182347]

[-1.0793867]

... ...]]

[[[-1.09307145]

[-1.09270821]

[-1.09247866]

[-1.09167145]

[-1.09215073]

[-1.09154532]

[-1.09078856]]

[[-1.09270821]

[-1.09247866]

[-1.09167145]

[-1.09215073]

[-1.09154532]

[-1.09078856]

[-1.09021847]]

[[-1.09247866]

[-1.09167145]

[-1.09215073]

[-1.09154532]

[-1.09078856]

[-1.09021847]

[-1.08807683]]

[[-1.09167145]

[-1.09215073]

[-1.09154532]

[-1.09078856]

[-1.09021847]

[-1.08807683]

[-1.08587718]]

.....]]]

[[-1.09021847]

[-1.08807683]

[-1.08587718]

[-1.08688872]

]

Formatted data
(training)

Unformatted
data

Formatted
input
data

Formatted
output

data

window_size =7

1st batch

2nd batch

3rd batch

batch_size = 10

Training the RNN

Prediction

Prediction

https://colab.research.google.com/drive/1zqHQZYvbeQMRtAQCl9A_64cLBeoI92-A?usp=sharing

Using the Notebook file

This is a link to the application notebook:

https://colab.research.google.com/drive/1zqHQZYvbeQMRtAQCl9A_64cLBeoI92-A?usp=sharing

	Slide 1
	Slide 2
	Slide 3: RNN structure
	Slide 4: RNN structure
	Slide 5: Example
	Slide 6
	Slide 7: Basic RNN - critical analyses
	Slide 8: Forward and backward propagation for a DNN
	Slide 9: Basic RNN - critical analyses – cont.
	Slide 10: Basic RNN - critical analyses
	Slide 11: LSTM network
	Slide 13: LSTM cell structure
	Slide 14
	Slide 15
	Slide 16
	Slide 18: Case study
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Training the RNN
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Using the Notebook file

