
RNN

Recurrent Neural Network

Artificial neural network that are able to recognize and 

predict sequences of data such as text, genomes, 
handwriting, spoken word, or numerical time series data. 

They have loops that allow a consistent flow of 
information and can work on sequences of arbitrary 
lengths.

Make use of internal state (memory) to process a 
sequence of inputs.

https://heartbeat.fritz.ai/a-beginners-guide-to-implementing-long-
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RNNs are used to solve several problems:

• Language translation and modeling

• Speech recognition

• Image captioning

• Time series data such as stock prices (tell when to buy or sell)

• Automatic (autonomous?) driving systems to anticipate car 
trajectories; help avoid accidents.

https://heartbeat.fritz.ai/a-beginners-guide-to-implementing-long-
short-term-memory-networks-lstm-eb7a2ff09a27 
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RNN structure

https://adventuresinmachinelearning.com/recurrent-neural-networks-
lstm-tutorial-tensorflow/ 

The output of the 
hidden layer is fed 
back into the same 
hidden layer

We can model time or
sequence-dependent 
data (time series)

The weights of the connections between time steps are shared i.e. 
there isn’t a different set of weights for each time step.
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Example“A girl walked into a bar, and she said: ‘Can I have a drink please?’. 

The bartender said ‘Certainly {?}”

{?}      can be      “miss”, “ma’am”, …

“sir”, “Mister”, … also could fit

To get the correct gender of the noun, the neural network needs to recall that two 
previous words designating the likely gender (i.e., “girl” and “she”) were used. 

Unrolled RNNRNN

Serial-to- parallel conversion of data sequence 
to supply a stream of data to the RNN

https://adventuresinmachinelearning.com/recurrent-neural-
networks-lstm-tutorial-tensorflow/ 
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many-to-one model

inputs:    “A girl walked into a bar…” 
outputs (predicted):   h0 to  ht. 

many-to-many model

one-to-many model

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/ 
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Basic RNN - critical analyses

For RNN, ideally, we would want to have long memories (many 
time steps), so the network can connect data relationships at 
significant distances in time.
An RNN with long memory could make real progress in 
understanding how language and narrative work, how stock 
market events are correlated, etc.

The more time steps we have, the more chance we have of 
back-propagation error gradients: 

• accumulating and exploding 
• vanishing down to nothing

RNNs present a major setback
o vanishing gradient / exploding gradient

They have difficulties in learning long-range dependencies 
(relationship between entities that are several steps apart).

But
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Forward and backward propagation for a DNN 



In deep networks or recurrent neural networks, error gradients can accumulate 

during an update and result in very large gradients. 

The explosion occurs through exponential growth by repeatedly multiplying 

gradients through the network layers that have values larger than 1.0.

These in turn result in large updates to the network weights, and in turn, an 

unstable network. 

At an extreme, the values of weights can become so large as to overflow and result 

in NaN values.

When n hidden layers use an activation that give small gradients (below unity, like 

the sigmoid function), n small derivatives are multiplied together. Thus, the error 

gradient decreases exponentially as we propagate down to the initial layers.

A small gradient means that the weights and biases of the initial layers will not be 

updated effectively with each training session. Since these initial layers are often 

crucial to recognizing the core elements of the input data, it can lead to overall 

inaccuracy of the whole network.

Basic RNN - critical analyses – cont. 



𝑎2 = 𝐹 𝑈2𝑥2 + 𝑉2 𝐹 𝑈1𝑥1 + 𝑉1 𝐹 𝑈0𝑥0

For back-propagation we compute the gradients of the activation function

The problem with the sigmoid-type activation 
function occurs when the input values are such 
that the output is close to either 0 or 1:   
• the gradient is very small

Multiplying many sigmoid gradients:     → 0 
Vanishing gradients

Basic RNN -
critical analyses

Solution:   LSTM neural network
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LSTM network
• LSTM - Long Short-Term Memory

To reduce the vanishing/exploding gradient problem, reduce the 
multiplication of gradients. 

The LSTM cell is a specifically designed unit of logic that will help reduce 
the gradient problem sufficiently to make recurrent neural networks 
more useful for long-term memory tasks i.e. text sequence predictions. 

The way it does so is by creating an internal memory state which is 
simply added to the processed input, which greatly reduces the 
multiplicative effect of small gradients. 

The time dependence and effects of previous inputs are controlled by 
an interesting concept called a forget gate, which determines which 
states are remembered or forgotten. 

Two other gates, the input gate and output gate, are also featured in 
LSTM cells.

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/ 
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LSTM cell structure

xt and at-1 concatenated together enters the top “data rail”

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/ 

current 
input 

recurrent 
output
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The input gate acts as a filter determining which inputs (through g) are 

switched on and off (i – between 0 and 1)

g and i  - multiplied element-wise (g o i) giving the output of the input stage

U - weight matrix for input
V - weight matrix for recurrent output
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The forget-gate: “filtered” state is simply added to the input, rather than 
multiplied by it, or mixed with it via weights and a sigmoid activation function as 
occurs in a standard recurrent neural network. 

This is important to reduce the issue of vanishing gradients.

Forget gate is a sigmoid activated set of nodes which is element-wise multiplied by st-1 

to determine which previous states should be 
▪ remembered (i.e. forget gate output close to 1) 
▪ forgotten        (i.e. forget gate output close to 0).

𝒂𝒕−𝟏

self-reccurent
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The output gate has two components 

• tanh squashing function
• output sigmoid gating function. 

The output sigmoid gating function determine which values of the state are output from the 
cell (values of the output gate close to 1). 

o

The LSTM cell is very flexible, with gating functions controlling 

✓ what is taken as input, 

✓ what is “remembered” in the internal state variable, 

✓ what is output from the LSTM cell.

a
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Case study 

• Implement a time series analysis using a 

RNN (LSTM) to predict the prices of Bitcoin  
using historical data from CryptoDataDownload

Python, TensorFlow

Colaboratory

http://www.cryptodatadownload.com/


Application 
flowchart

Uses 
TensorFlow



. csv



Original data
Close values



Standardize features - normalization

Standardize features by removing the mean and scaling to unit variance. The 
standard score of a sample x is calculated as:

z = (x - u) / s

          u is the mean of the training samples
          s is the standard deviation of the training samples.

Centering and scaling happen independently on each feature by computing the 
relevant statistics on the samples in the training set. 

Mean and standard deviation are then stored to be used on later data using 
transform.

Standardization of a dataset is a common requirement for many machine learning 
estimators: they might behave badly if the individual features do not more or less 
look like standard normally distributed data (e.g. Gaussian with 0 mean and unit 
variance).



Standardized data





Defining the network

Hyperparameters

Hyperparameters explain higher-level structural information about the RNN 
model.

batch_size = 64;  This is the number of windows of data we are passing at once.

window_size = 7;  The number of previous days we consider to predict the bitcoin 
price for our case.

hidden_layers = 3;  (LSTM units: 256, 512, 512)

clip_margin = 4; This is to prevent exploding the gradient (to clip gradients below/ 
above this margin).

learning_rate = 0.00005

epochs = 500;  This is the number of iterations (forward and back propagation) 
our model needs to make.
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Training the RNN







Prediction



Prediction



https://colab.research.google.com/drive/1zqHQZYvbeQMRtAQCl9A_64cLBeoI92-A?usp=sharing 

Using the Notebook file 

This is a link to the application notebook:

https://colab.research.google.com/drive/1zqHQZYvbeQMRtAQCl9A_64cLBeoI92-A?usp=sharing
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