RNN
Recurrent Neural Network

Artificial neural network that are able to recognize and

predict sequences of data such as text, genomes,
handwriting, spoken word, or numerical time series data.

They have loops that allow a consistent flow of
information and can work on sequences of arbitrary
lengths.

Make use of internal state (memory) to process a
sequence of inputs.

https://heartbeat.fritz.ai/a-beginners-guide-to-implementing-long-
short-term-memory-networks-Istm-eb7a2ff09a27

https://heartbeat.fritz.ai/a-beginners-guide-to-implementing-long-short-term-memory-networks-lstm-eb7a2ff09a27
https://heartbeat.fritz.ai/a-beginners-guide-to-implementing-long-short-term-memory-networks-lstm-eb7a2ff09a27

RNNs are used to solve several problems:

* Language translation and modeling

» Speech recognition

* [mage captioning

* Time series data such as stock prices (tell when to buy or sell)

e Automatic (autonomous?) driving systems to anticipate car
trajectories; help avoid accidents.

https://heartbeat.fritz.ai/a-beginners-guide-to-implementing-long-
short-term-memory-networks-Istm-eb7a2ff09a27

https://heartbeat.fritz.ai/a-beginners-guide-to-implementing-long-short-term-memory-networks-lstm-eb7a2ff09a27
https://heartbeat.fritz.ai/a-beginners-guide-to-implementing-long-short-term-memory-networks-lstm-eb7a2ff09a27

R N N St ru Ct ure The output of the
at i at i at i hidden layer is fed
| 1 2 3 back into the same
l I3 hidden layer
"‘éy ST) S SR Hidder
ey We can model time or
at~t sequence-dependent
data (time series)
Input
layer

The weights of the connections between time steps are shared i.e.
there isn't a different set of weights for each time step.

https://adventuresinmachinelearning.com/recurrent-neural-networks-
Istm-tutorial-tensorflow/

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/
https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

1nd1no juaJtindal

1Nd1No JuaJindal
10} X1a3ew 1y3siom

delay

a;,

1ndul ua4ind

3ndul 4o} X1a3ew ysiom

F(Ux;+Va_q)

uoI1ouNny} UOIIBAIIOE

1nd1no juaJind

At

RNN structure

"A girl walked into a bar, and she said: ‘Can | have a drink please?'. Exa m ple
The bartender said ‘Certainly {?}"

{?l canbe "miss”, “ma'am’, ..
“sir”, "Mister”, .. also could fit

To get the correct gender of the noun, the neural network needs to recall that two
previous words designating the likely gender (i.e., “girl" and "she”) were used.

(@) (2 @
— T

(¥ | F 1:> F » F » F —| F
. T T
"A" "girt" "walked" e "Certainly"
RNN Unrolled RNN

Serial-to- parallel conversion of data sequence
to supply a stream of data to the RNN

https://adventuresinmachinelearning.com/recurrent-neural-
networks-Istm-tutorial-tensorflow/

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/
https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

C)

®

A 4

%:D
©

"girl" "walked"
F > F > F
IIAII IVgirlll "Wa[ked"
"walked" "into" "a"
A A T
» F » /=

ng il’l"

many-to-many model

n ()

inputs: “A girl walked into a bar...”
outputs (predicted): hyto h,.

G)—

"Certainly"

£ = "miss"(?)

many-to-one model

O —@

"Certainly"

"Certainly"

one-to-many model

" —®

com/recurrent-neural-networks-Istm-tutorial-tensorflow/

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

Basic RNN - critical analyses

For RNN, ideally, we would want to have long memories (many

time steps), so the network can connect data relationships at
significant distances in time.

An RNN with long memory could make real progress in

understanding how language and narrative work, how stock
market events are correlated, etc.

But _
RNNs present a major setback

o vanishing gradient / exploding gradient

They have difficulties in learning long-range dependencies
(relationship between entities that are several steps apart).

The more time steps we have, the more chance we have of
back-propagation error gradients:

« accumulating and exploding
 vanishing down to nothing

Forward and backward propagation for a DNN

il (21 S | (L]
el 0 a2 B[00 pla I NTET)
jc:(j.l W ’5 af u}[! o bU ’43 — 1 e 9&__:1”[J é ‘
—_—> —_—) 2 —o — L)

ch cOL‘rC cathb
lf;:j:; X i XG

! I p—
01 oA d | Wi, £ e B LT | s S
T | A] T | Y

[R Iz

— v A
___,Jbomwnf prep V} W 1

—-— M x'/fm/{*@” ém . ém -~ /Z f]/ é[q

8/20

Basic RNN - critical analyses — cont.

In deep networks or recurrent neural networks, error gradients can accumulate
during an update and result in very large gradients.

The explosion occurs through exponential growth by repeatedly multiplying
gradients through the network layers that have values larger than 1.0.

These in turn result in large updates to the network weights, and in turn, an
unstable network.

At an extreme, the values of weights can become so large as to overflow and result
in NaN values.

When n hidden layers use an activation that give small gradients (below unity, like
the sigmoid function), n small derivatives are multiplied together. Thus, the error
gradient decreases exponentially as we propagate down to the initial layers.

A small gradient means that the weights and biases of the initial layers will not be
updated effectively with each training session. Since these initial layers are often
crucial to recognizing the core elements of the input data, it can lead to overall
Inaccuracy of the whole network.

(a9 Basic RNN -

A

F > F s\ F
Vl V2

1Ug ‘oL
® ®

critical analyses

a, =F (szz +V, (F (Urry + V4 (F(ono))))>

For back-propagation we compute the gradients of the activation function

The problem with the sigmoid-type activation

function occurs when the input values are such 10|

that the output is close to either O or 1:
* the gradientis very small

0.8 4

0.6 1

>

Multiplying many sigmoid gradients: =2 0 041

Vanishing gradients

0.2 1

Solution: LSTM neural network

LSTM network

* LSTM - Long Short-Term Memory

To reduce the vanishing/exploding gradient problem, reduce the
multiplication of gradients.

The LSTM cell is a specifically designed unit of logic that will help reduce
the gradient problem sufficiently to make recurrent neural networks
more useful for long-term memory tasks i.e. text sequence predictions.

The way it does so is by creating an internal memory state which is
simply added to the processed input, which greatly reduces the
multiplicative effect of small gradients.

The time dependence and effects of previous inputs are controlled by
an interesting concept called a forget gate, which determines which
states are remembered or forgotten.

Two other gates, the input gate and output gate, are also featured in
LSTM cells.

https://adventuresinmachinelearning.com/recurrent-neural-networks-Istm-tutorial-tensorflow/

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

LSTM cell structure

X, and a, , concatenated together enters the top “data rail”

|
recurrent
a;_1

output

current x, ——
input

mputl l input l forget 1 output
£ '. gate gate gate
(tanh) (o) o . O
/L\ / i N St.q /‘L h‘

https://adventuresinmachinelearning.com/recurrent-neural-networks-Istm-tutorial-tensorflow/

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

! : : !
at—l 080' """""" """"""
e N ———
. : oal.SigMoid 2
lnputl l input l forget 1 output ' ; g g
gate gate gate R S 7 i e R
> ‘tanh o o (| O Ol
6 4 2 2 4 6
i | ! I S L
AT, A %1 g h, i g
(X) (X (X} > sl S S
g | i i tanh /]
L e e
\ S; ' ; : : :
> » tanh e L S
-1
6 4

g = tanh(b? + 2 U9+ a;_1VY)

U - weight matrix for input
- i g i V - weight matrix for recurrent output
i=ocb"+zU"+ 0, V") & P

The input gate acts as a filter determining which inputs (through g) are
switched on and off (i — between 0 and 1)

g and i - multiplied element-wise (g o /) giving the output of the input stage

https://adventuresinmachinelearning.com/recurrent-neural-networks-Istm-tutorial-tensorflow/

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

1 Fe— -

Forget gate is a sigmoid activated set of nodes which is element-wise multiplied by s, ;
to determine which previous states should be

= remembered (i.e. forget gate output close to 1) self-reccurent

= forgotten (i.e. forget gate output close to 0).

f=o® +aUf+a,.vH) s=8_10f+goi

The forget-gate: *filtered” state is simply added to the input, rather than
multiplied by it, or mixed with it via weights and a sigmoid activation function as
occurs in a standard recurrent neural network.

This is important to reduce the issue of vanishing gradients.

https://adventuresinmachinelearning.com/recurrent-neural-networks-Istm-tutorial-tensorflow/

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

hy.4

/ inputl l l | ; : |
Xt tanh o o o _ _: _; ;
LI l f l - l (0] h, ; 5 S
g * I anh. ..
\ }- » tanh ‘ I E
The output gate has two components

* tanh squashing function
e output sigmoid gating function.

input

forget 1 output
gate

gate gate

The output sigmoid gating function determine which values of the state are output from the
cell (values of the output gate close to 1).

o=0(b’+2U°+09,,V° h;=tanh(s;) oo

The LSTM cell is very flexible, with gating functions controlling
v" what is taken as input,
v" what is “remembered” in the internal state variable,
v" what is output from the LSTM cell.

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

Case study

* Implement a time series analysis using a

RNN (LSTM) to predict the prices of Bitcoin
using historical data from CryptoDataDownload

Python, TensorFlow
Colaboratory

http://www.cryptodatadownload.com/

Application
flowchart

Uses
TensorFlow

Impaort libraries
Load data
Explore and preprocess data
View dataset
Standardize features
Format and split the dataset
RNN ahitecture
Define the sequential model
Compile and train the RNN model
Evaluate the CNN model

FPredict

= W

1457
1458
1459
1460
1461

. CSvV

Date

2016-12-
2816-12-
2816-12-
2016-12-
2816-12-

2028-12-
2028-12-
2028-12-
2026-12-
2028-12-

14
15
16
17
13
18
11
12

13
14

(pen
7808, 085085
738.078087
778.963013
785.166016
791.067994

18553, 2953825
18263.92%385
186851.328313
18386. 765625
19286.181563

High
782.833997
781.434993
785.831952
702.5838972
794737608

18553.298828
18268.453125
18919.558731
19381.535156
19290.531258

Low
770.838980
717.802882
778.963813
7ad.8p4814
788.0820801

17957.864453
17619.533283
186846.041816
18734,332831
19@12.788984

Close
781.481818
778, 888013
784.,906542
758, 828579
7590,536029

Adj Close
781.481818
7758.0888813
784.986952
798.828979
798.530828

13264.992188 18264,9592188
13658.904297 136858.984297
18803,656256 13383.656258
19142.582813 19142,382813
19188.367188 19188.367188

Volume
75975660
81588896
53088260
78950560
bBL 244680

25547132265
27919648985
217525580582
25458458637
23087940568

Original data

[781.481818 775.883013 734.986982 ... 18883.85625 19142.352813

19188.367188] Close Values

The size of the dataset is: 1482
Bitcoin prices from 2016-12-14 to 2020-12-14

2000097 —— Price

17500 7

15000 A

12500 T

10000 A

Price of Bitcoin

7500 T

5000

2500

T T T T T T T
0 200 400 600 800 1000 1200 1400
Days

max: 19625.8350938 min: 777.75781% mean: 7245.143868168262

Standardize features - normalization

Standardize features by removing the mean and scaling to unit variance. The
standard score of a sample x is calculated as:

z=(x-u)/s

u is the mean of the training samples
s is the standard deviation of the training samples.

Centering and scaling happen independently on each feature by computing the
relevant statistics on the samples in the training set.

Mean and standard deviation are then stored to be used on later data using
transform.

Standardization of a dataset is a common requirement for many machine learning
estimators: they might behave badly if the individual features do not more or less
look like standard normally distributed data (e.g. Gaussian with 0 mean and unit
variance).

Standardized data

Normalised Bitcoin prices from 2016-12-14 to 2020-12-14

—— Standardized price

The standardized dataset:
[[-1.65229279]
[-1.65315014]

29 [-1.65141782]

[2.95467923)

s
£ [3.04126721]
5 11 [3.e520221 1]
s
=
x
1]
A o-
_1-

T T T T T T
0 200 400 600 800 1000 1200 1400
Days

max: [3.16485135] min: [-1.65324475] mean: 7.7761174912186687e-17

Bitcoin prices from 2016-12-14 to 2020-12-14

200001 — price

17500 1

15000 +

12500 4

10000

Price of Bitcoin

7500 A

5000 +

2500 +

T T T T T T T
0 200 400 600 800 1000 1200 1400
Days

max: 19625.835938 min: 777.757019 mean: 7245.143068168262

Normalised Bitcoin prices from 2016-12-14 to 2020-12-14

—— Standardized price

Scaled price of Bitcoin

T T T T T T T

0 200 400 600 800 1000 1200 1400
Days

max: [3.16485135] min: [-1.65324475] mean: 7.776117491218607e-17

Defining the network

Hyperparameters

Hyperparameters explain higher-level structural information about the RNN
model.

batch_size = 64; This is the number of windows of data we are passing at once.

window_size = 7; The number of previous days we consider to predict the bitcoin
price for our case.

hidden_layers = 3; (LSTM units: 256, 512, 512)

clip_margin = 4; This is to prevent exploding the gradient (to clip gradients below/
above this margin).

learning_rate = 0.00005

epochs = 500; This is the number of iterations (forward and back propagation)
our model needs to make.

Formatted data
(training)

window_size =7

input
data

Unformatted

data

[[-1.09307145])
[-1.09270821]
.09247866] ~
.09167145] (
.09215073] | ¢
.09154532] .
.09078856]
.09021847]
.08807683])
.08587718]
.08688872]
.08587214]
.08597052]
.08608655]
.08476222]
.08392726]
.08271645]
.08161158]
.08182347]
.0793867]

11

- e-e--s*ssr-->> - r~~~"r--™TmmMMF"1T™M™M:/"M™™
. |

Formatted

[[-
.09270821]
.09247866]

[
[-1
[-1
[-1.
[-1
[-1
[-1

[[-1.09270821])
[-1.
.09167145]
.09215073]
.09154532]
.09078856]
.09021847]]

R R R RR

[_
[_
[_
[_
[_

[[-1.09247866])
[-1.
.09215073]
.09154532]
.09078856]
.09021847]
.08807683]] |

N\

R R R RR

[_
[_
[_
[_
[_

[[-1.09167145]
[-1.
.09154532]
.09078856]
.09021847]
.08807683]
.08587718]1])

R R R RR

[_
[_
[_
[_
[_

1.09307145?

09167145]

.09215073]
.09154532]

\

.09078856]]

09247866]

09167145]

09215073]

. 111

Formatted
\ output
data

[[-1.09021847]
[-1.08807683]
[-1.08587718]
[-1.08688872]

]

N

I

e e e e e e e

e e e e e e e e

) N N N Nt =

15t batch

2"d batch

3rd batch

Loss

Training the RNN

Model loss during training

Loss and accuracy during training

—— Train

0.8 —— validation
0.6 1
0.4 -
0.2 -

Ptretalin, 4 & _
0.0 -

0 100 200 300 400 500

Epoch

15/15 - @s - lpss: 2.8111 - mape: 44.2792 - 85Sms/epoch - 6ms/step

Accuracy in the test data:

44,27917898999a234

Model mean absolute percentage error

180 ~

160 +

140

40

20 A

—— Train
— Val

o

T T T
200 300 400

Epoch

T
100

Loss

Model loss during training

0.8 1

0.6

0.4 1

0.2 A

0.0

— Train

—— Validation

I
100

I
200

Epoch

I
300

I
400

I
200

Model mean absolute percentage error

180 +

160 ~

140 ~

120 +

e

g'lﬂﬂ—
80 -

60 -

20

— Train
— a3l

100

200

Epoch

Bitcoin price

Prediction

Bitcoin price - training data

Actual price
Predcited price

200

400 600
Days

800

1000

Bitcoin price

Prediction

Bitcoin price - test data

3.0 ~

2.5 1

2.0 7

1.5+

1.0+

0.5 1

0.0 1

_.[].5 -

Actual price
Predicted price

100

200 300 400

Using the Notebook file

This is a link to the application notebook:

https://colab.research.google.com/drive/1zgHQZYvbeQMRtAQCI9A 64cLBeol92-A?usp=sharing

https://colab.research.google.com/drive/1zqHQZYvbeQMRtAQCl9A_64cLBeoI92-A?usp=sharing

	Slide 1
	Slide 2
	Slide 3: RNN structure
	Slide 4: RNN structure
	Slide 5: Example
	Slide 6
	Slide 7: Basic RNN - critical analyses
	Slide 8: Forward and backward propagation for a DNN
	Slide 9: Basic RNN - critical analyses – cont.
	Slide 10: Basic RNN - critical analyses
	Slide 11: LSTM network
	Slide 13: LSTM cell structure
	Slide 14
	Slide 15
	Slide 16
	Slide 18: Case study
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Training the RNN
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Using the Notebook file

