

ELECTRONIC DEVICES

Assist. prof. Laura-Nicoleta IVANCIU, Ph.D.

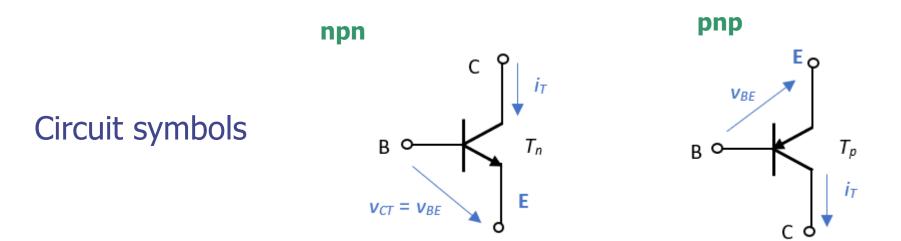
C12 – BJT operation

Contents

Simplified structure of a BJT

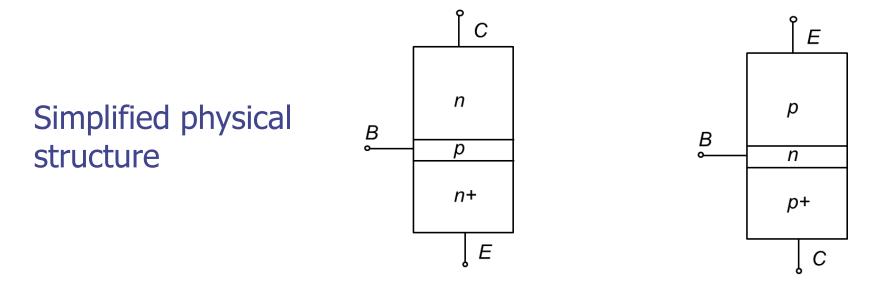
- npn BJT characteristics
- > Currents. Limiting the command current.
- BJT saturation
- Quiescent point of the BJT
- Operating regions
- > Examples

Previously on ED (C11):

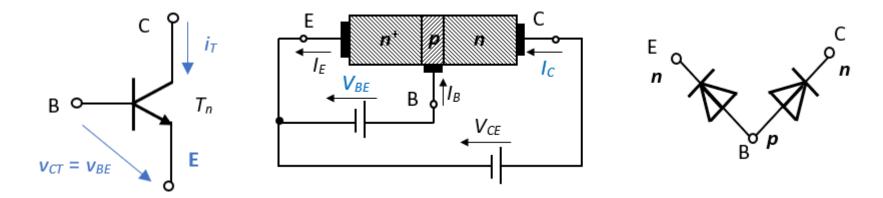

Transistors

- = active semiconductor devices, with three terminals
- used to amplify or switch signals
- essential components of electronic circuits
- discrete or integrated

Operating principle:


The voltage applied between two terminals (command) controls the current through the third terminal

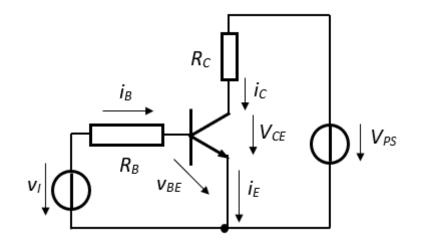
Simplified structure of a BJT


B – base, C – collector, E – emitter

The arrow on the emitter terminal indicates the direction of the positive current.

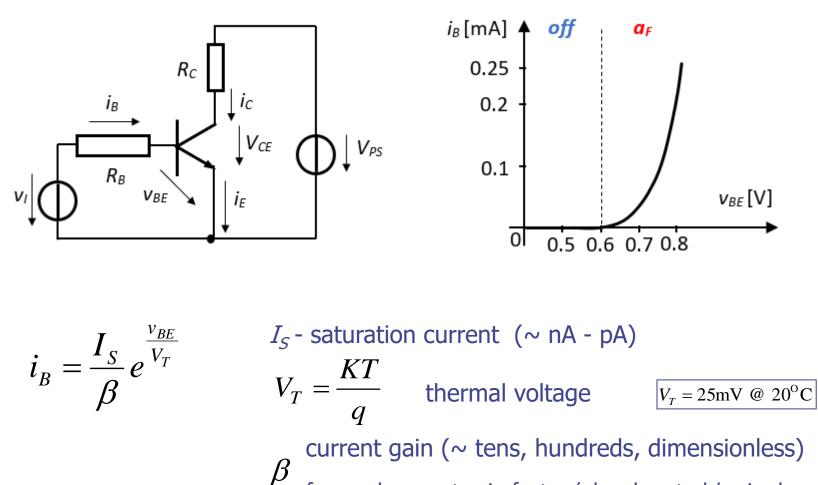
Simplified structure of a BJT

npn

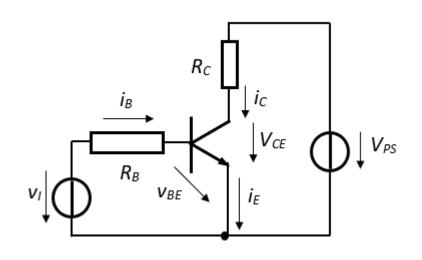

The transistor effect consists in a current flowing through a *reverse biased junction* (B-C) due to its interaction with a *forward biased junction* (B-E), placed in its very close vicinity.

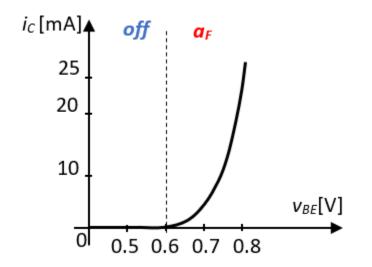
For the transistor effect

- **base** region very thin; considerably thinner than the diffusion length of the minority carriers in the base region;
- emitter region more doped than the base region
- emitter and collector regions wider than the diffusion length of the minority carriers in these regions.

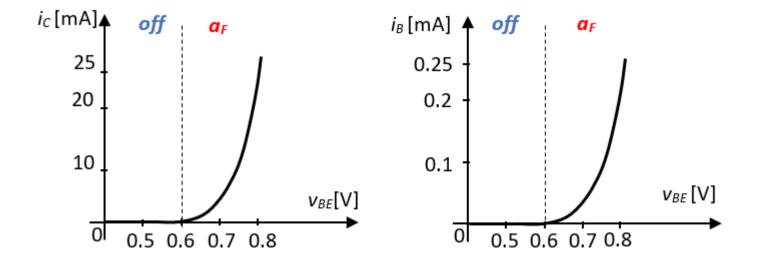

 \succ input characteristic - $i_B(v_{BE})$

> transfer characteristic - $i_C(v_{BE})$


family of output characteristics - i_C (v_{CE}), with v_{BE} and/or i_B as parameters


Input characteristic

forward current gain factor (also denoted h_{FE} in dc or h_{fe} in ac)

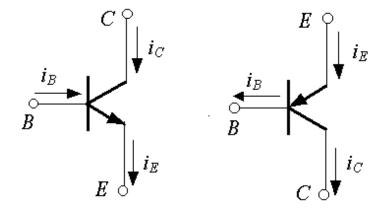

> Transfer characteristic



$$i_B = \frac{I_S}{\beta} e^{\frac{v_{BE}}{V_T}} \qquad i_C = \beta i_B \qquad i_C = I_S e^{\frac{v_{BE}}{V_T}}$$

> Transfer and input characteristics

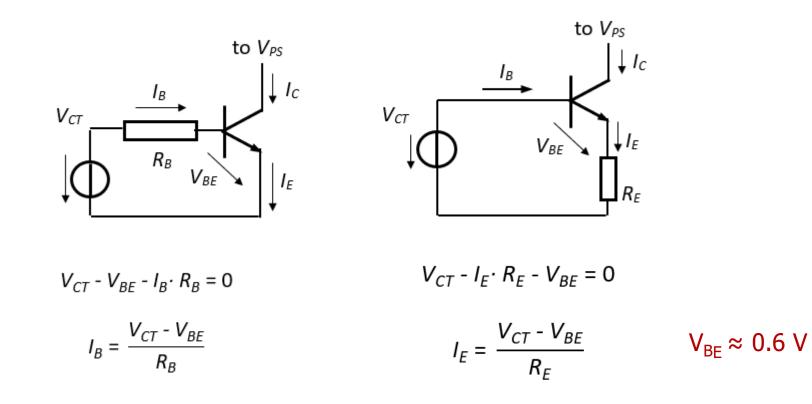
Family of output characteristics



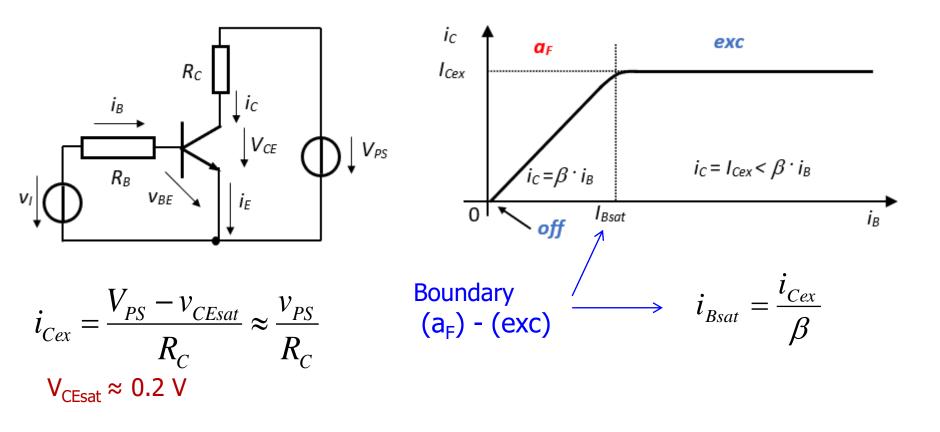
Laura-Nicoleta IVANCIU, *Electronic devices*

Currents. Limiting the command current.

 $i_E = i_C + i_B$!Always valid, regardless of operating region!


In the active region (a_F) :

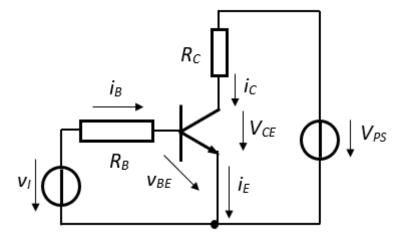
$$i_{C} = \beta i_{B} \qquad i_{E} = i_{C} + \frac{1}{\beta} i_{C} = i_{C} (1 + \frac{1}{\beta})$$
$$i_{E} = (\beta + 1) i_{B} \approx \beta i_{B} \qquad i_{E} \approx i_{C}$$


In the saturation region (exc): $i_C < \beta i_B$

> Limiting the command current

Command voltage is applied between B and E, so command current is I_B . Limit I_B by using a **series resistor** in B or E.

BJT saturation

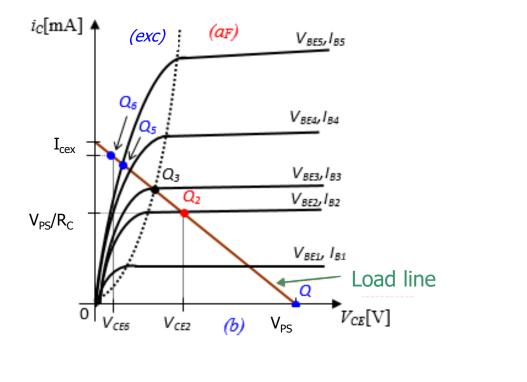


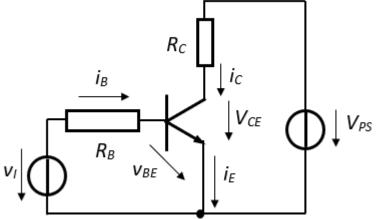
- resistors and applied voltages are chosen based on the desired region (off, a_F or exc) of the BJT
- BJT can also be seen as a current-controlled current source ($i_c = \beta i_B$), when operating in the active region (a_F)

Quiescent point of the BJT

Quiescent point Q = a point on the output characteristic $i_{C}(v_{CE})$ of the BJT

- Q is defined by V_{CE} and I_C
- Q(V_{CE}, I_C) is at the intersection between the load line and the output characteristic corresponding to v_{BE}

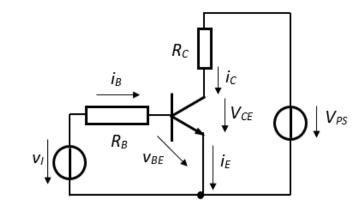



Load line:

 $v_{CE} = V_{PS} - R_C i_C$

Quiescent point of the BJT

Quiescent point Q = a point on the output characteristic $i_{C}(v_{CE})$ of the BJT


 $i_{C} = \beta i_{B}$ $v_{CE} = V_{PS} - R_{C} \cdot i_{C}$

 $Q_2(V_{CE2}, I_{C2})$

Operating regions, npn BJT

• *cutoff* (*off*), BJT - open switch:

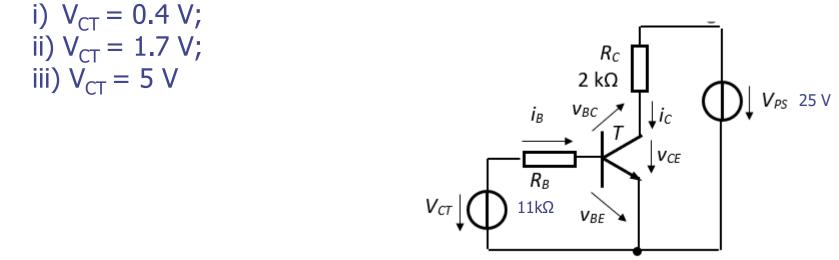
 $v_{BE} < V_{BE,on} \approx 0.6 V$ $I_B = I_C = I_E = 0 mA$ $V_{CE} = V_{PS}$

• extreme conduction or saturation (exc), BJT - closed switch:

v_{BE} > V_{BEsat}

$$I_{Bsat} = \frac{I_{Cex}}{\beta}; i_B > I_{Bsat}$$
$$I_c = I_{Cex} = \frac{V_{PS} - V_{CEsat}}{R}$$
$$v_{CE} = V_{CEsat} \approx 0.2 \text{ V}$$

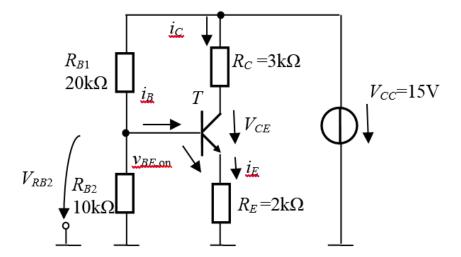
• *active forward* or *linear* (*a_F*), BJT - amplifier:


$$V_{BE,on} < v_{BE} < V_{BEsat}$$
$$i_{C} = I_{S} \cdot e^{\frac{v_{BE}}{V_{T}}}$$
$$i_{C} = \beta \cdot i_{B}$$

 $i_E = i_B + i_C = (\beta + 1) \cdot i_B$ 0 mA < $i_C < I_{Cex}$ 0.2 V < $V_{CE} < V_{PS}$

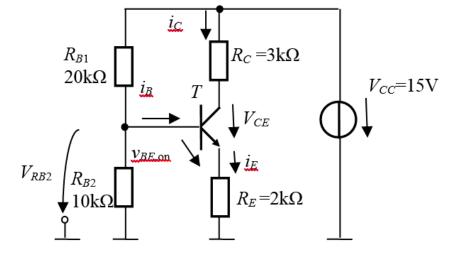
➤ Example - 1

$$\beta = 100, v_{BE,on} = 0.6 V, V_{CE,sat} = 0.2 V$$


Find the operating region and compute $Q(V_{CE}, I_C)$ for:

➤ Example - 2

 β = 100, v_{BE,on} = 0.7 V, V_{CE,sat} = 0.2 V


a) Find $Q(V_{CE}, I_C)$. b) What is the operating region of T ?

➤ Example - 2

Solution:

a) Since $I_B << I_C$ and $I_E = I_C + I_B$: $I_C = I_E$

 V_{RB2} – obtained from the voltage divider between R_{B1} and R_{B2} , out of V_{CC}

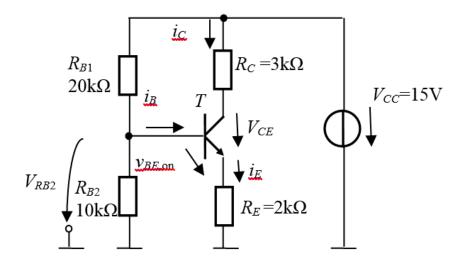
$$V_{RB2} = \frac{R_{B2}}{R_{B1} + R_{B2}} \cdot V_{CC} \qquad -V_{RB2} + v_{BE, on} + V_{RE} = 0$$

$$V_{RB2} = \frac{10k}{30k} \cdot 15V = 5V \qquad V_{RE} = V_{RB2} - v_{BE, on} \qquad I_C = \frac{V_{RE}}{R_E}$$

$$V_{RE} = 5 - 0.7 = 4.3V \qquad I_C = \frac{4.3V}{2k\Omega} = 2.15mA$$

$$V_{RE} = I_E \cdot R_E$$

➤ Example - 2


Solution:

a)

$$-V_{CC} + I_{C} \cdot R_{C} + V_{CE} + I_{C} \cdot R_{E} = 0$$

$$V_{CE} = V_{CC} - I_{C} \cdot (R_{C} + R_{E})$$

$$V_{CE} = 15 - 2.15 \times 10^{-3} \times 5 \times 10^{3}$$

 $V_{CE} = 4.25V$

Q(4.25 V; 2.15 mA)

 $\begin{array}{l} \textbf{Solution:} \\ \textbf{b)} \ \textbf{v}_{Co} = \textbf{V}_{RB2} > \textbf{v}_{BE,on} \Rightarrow \textbf{T} \ \text{ is on, in } (\textbf{a}_{F}) \ \text{ or in } (\textbf{exc}) \\ \textbf{Assume T in } (\textbf{a}_{F}). \end{array} \right) \\ \end{array} \\ \end{array}$

Compare i_{C} with i_{Cex} : If $i_{C} > i_{Cex}$, the assumption was false, and T is in (exc) If $i_{C} < i_{Cex}$, the assumption was true, and T is in (a_{F}) $I_{Cex} = \frac{V_{CC} - V_{CEsat}}{R_{C} + R_{E}}$ $2.15 \text{ mA} < 2.96 \text{ mA} \Rightarrow T \text{ is in } (a_{F})$

$$I_{Cex} = \frac{15 - 0.2}{3k + 2k} = \frac{14.8}{5 \cdot 10^3} = 2.96 mA$$

Summary

The BJT (almost) holds no secrets from us, after investigating:

- Simplified structure of a BJT
- > npn BJT characteristics
- Currents. Limiting the command current.
- BJT saturation
- Quiescent point of the BJT
- Operating regions
- > Examples

Next week: MOSFET operation