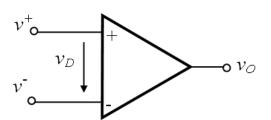


ELECTRONIC DEVICES

Assist. prof. Laura-Nicoleta IVANCIU, Ph.D.

C6 – Simple comparators with **OpAmp**



Contents

- ➤ Simple comparators with OpAmp
 - Simple comparators with $V_{Th} = 0 \text{ V}$
 - Simple comparators with V_{Th} ≠ 0 V
 - Applications

Relation between output and input voltages

$$v_0 = av_D = \infty \cdot v_D$$

I. Utilization as comparator, in switching mode

$$V_O \in \{V_{OL}; V_{OH}\}$$

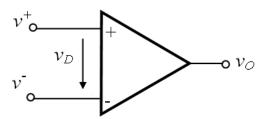
$$v_D > 0$$
, $v_O \rightarrow +\infty$, v_O limited by the positive supply $v_O = V_{OH} \approx +V_{PS}$
 $v_D < 0$, $v_O \rightarrow -\infty$, v_O limited by the negative supply $v_O = V_{OL} \approx -V_{PS}$

II. Utilization as amplifier

$$V_O \in (V_{OL}; V_{OH})$$

It is mandatory that $v_D = 0$, so then $v_O = a \cdot v_D = \infty \cdot 0$ - indetermination v_D is kept at 0 by means of external components (R)

OpAmp comparators


OpAmp in switching mode => OpAmp comparator

Voltage comparator = circuit that signalizes the relative state of two input voltages, through two different states of the output voltage

- ? relative state of two input voltages = ?
- ? two different states of the output voltage = ?

Simple comparators with OpAmp

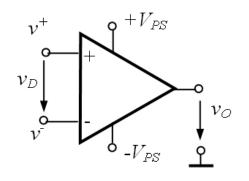
OpAmp comparators

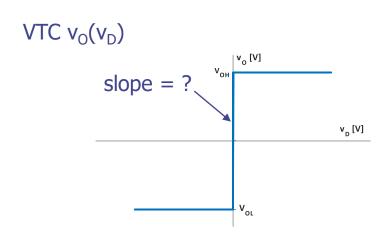
Voltage comparator = circuit that signalizes the relative state of two input voltages, through two different states of the output voltage

relative state of two input voltages = one input voltage is bigger/smaller than the other = their difference is positive/negative

For OpAmp comparators, a single input is considered, namely $v_D = v + v^{-1}$

two different states of the output voltage = low/high


$$V_{O} \in \{V_{OL}, V_{OH}\}$$


$$\mathbf{v_D} > \mathbf{0}$$
, meaning $v + > v^-$, $\mathbf{v_O} = \mathbf{V_{OH}} \approx + \mathbf{V_{PS}}$

$$\mathbf{v_D} < \mathbf{0}$$
, meaning $\mathbf{v} + < \mathbf{v}^-$, $\mathbf{v_O} = \mathbf{V_{OL}} \approx - \mathbf{V_{PS}}$

OpAmp comparators

OpAmp model in switching regime

$$v_{O} = \left\{ \begin{array}{ll} V_{OH}, & v_{D} > 0, & v^{+} > v^{-} \\ V_{OL}, & v_{D} < 0, & v^{+} < v^{-} \end{array} \right\}$$

OpAmp comparators

Types of voltage comparators:

- > Simple comparators without feedback, one threshold voltage
- Hysteresis comparators positive feedback, two threshold voltages

Threshold voltage V_{Th} = particular value(s) of the input voltage, for which the output voltage switches (changes states) (hence $v_D = 0$)

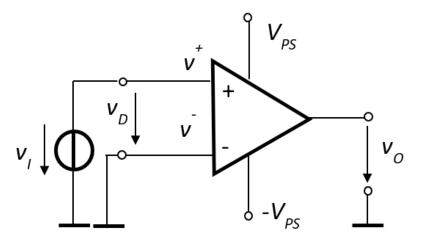
$$V_{Th} = v_I \mid_{v_D=0}$$

Feedback = (backward) connection, between output and input

- positive feedback = output is connected to non-inverting input
- negative feedback = output is connected to inverting input

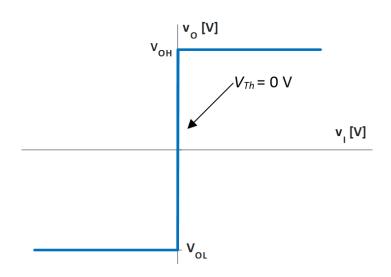
Simple comparators

= comparators without feedback, one threshold voltage

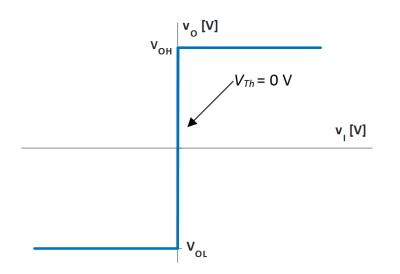

Threshold voltage V_{Th} = particular value(s) of the input voltage v_I , for which the output voltage switches (changes states) (hence $v_D = 0$)

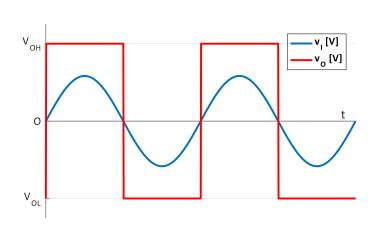
$$V_{Th} = v_I \mid_{v_D=0}$$

Steps for finding V_{Th}:

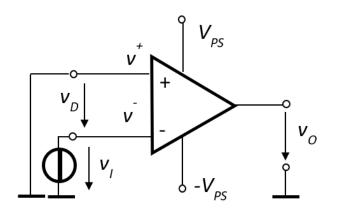

- Step 1: write down the expressions for v⁺ and v⁻ (Ohm's law, KVL, voltage divider, Millman)
- Step 2: write down $v_D = v^+ v^-$
- Step 3: set v_D to 0 and replace v_I with V_{Th}
- Step 4: compute the numerical value of V_{Th}

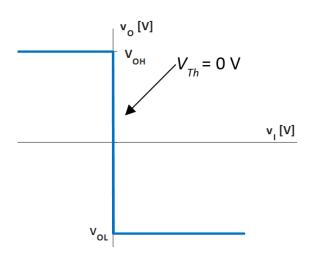
Non-inverting


$$v_{D} = v^{+} - v^{-}$$
 $v^{+} = v_{I}; \quad v^{-} = 0$
 $v_{D} = v_{I}$
 $v_{D} = 0; \quad V_{Th} = 0$

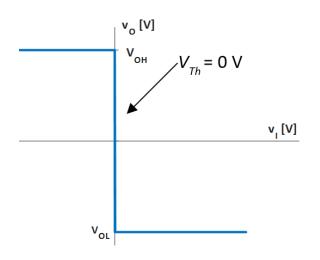

- v_I is applied at the non-inverting input (v⁺)
- the inverting input (v -) is connected to ground (0 V)

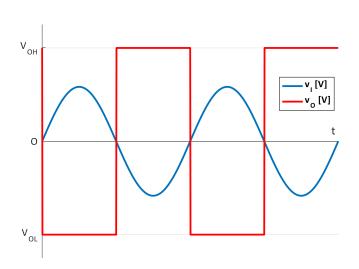
$$v_O = \begin{cases} V_{OH} & \text{if } v_D > 0, \text{ this is } v_I > 0 \\ V_{OL} & \text{if } v_D < 0, \text{ this is } v_I < 0 \end{cases}$$


Non-inverting

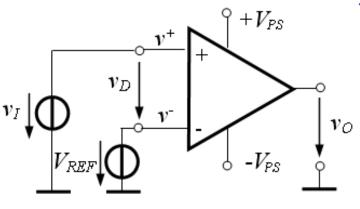

$$v_{\mathcal{O}} = \begin{cases} V_{\mathcal{O}H} & \text{if } v_{\mathcal{D}} > 0, \text{ this is } v_{\mathcal{I}} > 0 \\ V_{\mathcal{O}L} & \text{if } v_{\mathcal{D}} < 0, \text{ this is } v_{\mathcal{I}} < 0 \end{cases}$$

Inverting


$$v_{D} = v^{+} - v^{-}$$
 $v^{+} = 0; \quad v^{-} = v_{I}$
 $v_{D} = -v_{I}$
 $v_{D} = 0; \quad V_{Th} = 0$

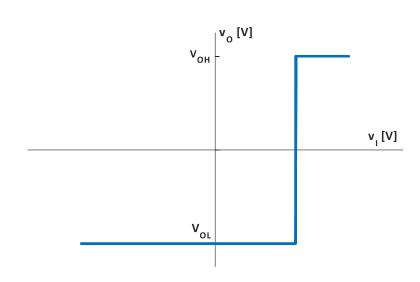

- v_I is applied at the inverting input (v ⁻)
- the non-inverting input (v⁺) is connected to ground (0 V)

$$v_O(v_I) = ?$$


Inverting

\triangleright Simple comparators with $V_{Th} \neq 0 V$

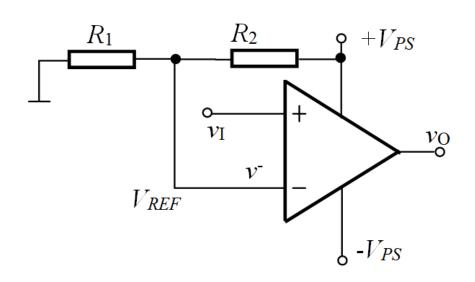
Non-inverting



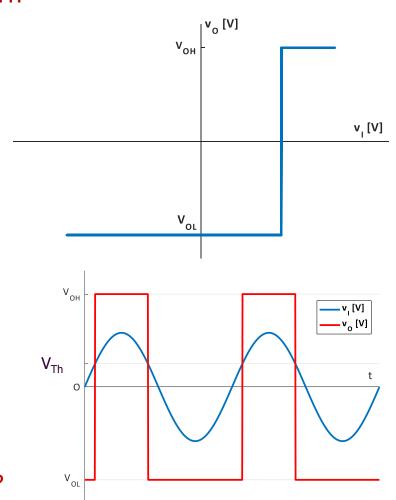
$$v_D = v^+ - v^-$$

$$v_D = v_I - V_{REF}$$

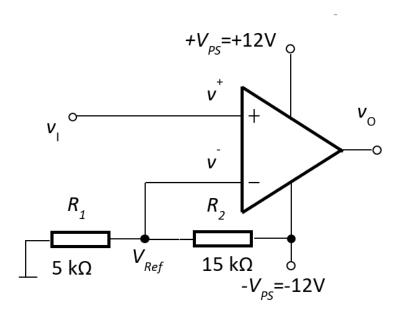
$$v_D = 0; \quad V_{Th} = V_{REF}$$


- v_T is applied at the non-inverting input (v^+)

How can V_{REF} be obtained, using the already available dc supplies?


\triangleright Simple comparators with $V_{Th} \neq 0 V$

Non-inverting



$$V_{REF} = \frac{R_1}{R_1 + R_2} V_{PS}$$

Negative V_{REF} ?

- \triangleright Simple comparators with $V_{Th} \neq 0 V$
 - Example

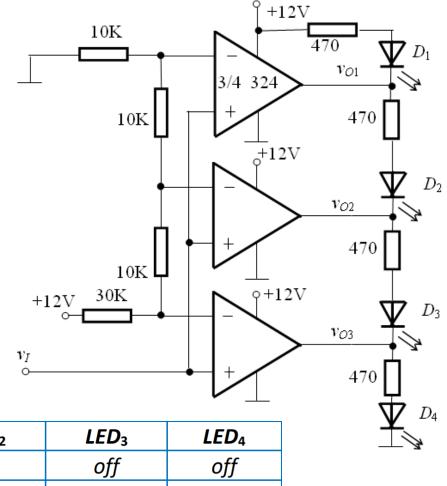
- a) Deduce and plot VTC $v_0(v_I)$. What is the application of the circuit?
- b) Plot $v_0(t)$ for the $v_1(t)$ sinewave, 8 V amplitude, and then for 2 V amplitude.
- C) Change the circuit, so that it becomes an inverting comparator, with $V_{Th} = 6 \text{ V}$.

Applications

- general-purpose OpAmps are often used as comparators
- **special class** of ICs, intended for use as comparators:

LM 306, LM 311, LM 399, LM 393, LM 339

- high differential input voltage
- high-speed response (high slew-rate)
- open collector (open drain)
- many comparators have a ground terminal that is not present in usual OpAmps

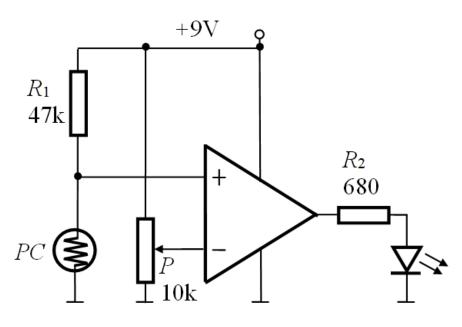

Applications

- Logic circuits
- Interface between analog and logic circuits
- Obtaining rectangular signal from sinusoidal (triangular) signal
- Optical indicator for voltage level (L10)
- Pulse width modulation
- Signalizing and control circuits
- Analog to digital converters, etc

> Applications

Optical indicator for voltage level

To be discussed in Lab 10



Range of v_i	LED ₁	LED ₂	LED ₃	LED ₄
[0 V; 2 V]	on	off	off	off
(2 V; 4 V]	off	on	off	off
(4 V; 6 V]	off	off	on	off
(6 V; 12 V]	off	off	off	on

> Applications

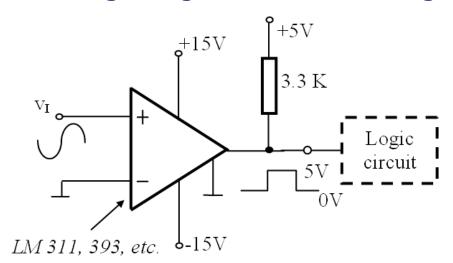
Light sensor circuit

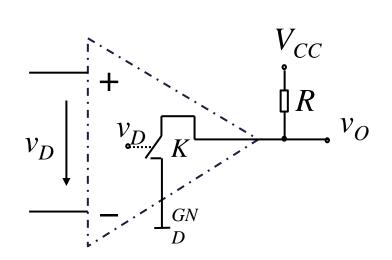
Optional

PC: CdS Photoconductive Photocells

PDV-P8001

LDR - light dependent resistor


Dark resistance: $R_D > 200 \text{ k}\Omega$


Illuminated Resistance: $R_I \in (3; 11) k\Omega$

Optional

Applications

Analog to logic circuits interfacing

Comparator model

$$v_D > 0$$
 $K - (off)$ $v_O = V_{CC}$
 $v_D < 0$ $K - (on)$ $v_O = 0$

Summary

- Simple comparators with OpAmp
 - Simple comparators with $V_{Th} = 0 \text{ V}$
 - Simple comparators with $V_{Th} \neq 0 V$
 - Applications

Next week: Hysteresis comparators with OpAmp.