

ELECTRONIC DEVICES

Assist. prof. Laura-Nicoleta IVANCIU, Ph.D.

C9 – Summing and differential amplifiers with OpAmp

Contents

Summing amplifiers with OpAmp

- Inverting summing amplifier
- Non-inverting summing amplifier
- Differential amplifiers with OpAmp
- Recap circuits with OpAmp

Types of amplifiers with OpAmp

v+ v-		Amplifier	
VI	ground	non-inverting	
ground	V _I	inverting	
V _{I1}	V ₁₂	differential	
v _{I1} , v _{I2}	ground	summing, non-inverting	
ground	V _{I1} , V _{I2}	summing, inverting	

Summing amplifiers

Inverting summing amplifier

Relationship between resistors to obtain the average of input voltages:

 $R_1 = R_2 = 2R$

Summing amplifiers

a) $v_0(v_{i1}, v_{i2})$ assuming op amp in the active region. What is the application of the circuit?

- b) Considering $v_{i1} = 2 V$, plot the VTC $v_0(v_{i2})$ for $v_{i2} \in [-5 V; 5 V]$. What is the v_{i2} range, so that the amplifier works in its active region?
- c) Plot $v_{I1}(t)$, $v_{I2}(t)$ and $v_{O}(t)$ for $v_{I1}(t)=1sin\omega t [V]$, $v_{I2}(t)=0.5sin\omega t [V]$.
- d) Resize R_1 , R_2 , R_3 , R_4 so that $v_0 = -(v_{i1} + v_{i2})$.
- e) Modify the circuit, in order to obtain a non-inverting summing circuit, with $v_0 = v_{i1} + v_{i2}$.

Summing amplifiers

> Non-inverting summing amplifier

Relationship between resistors to have $v_O = v_{I1} + v_{I2}$?

$$R_1 = R_2$$
 and $R_3 = R_4$

Usually $R_1 = R_2 = R_3 = R_4$

How can we compute v_0 ?

$$v_{O} = \frac{R_{4}}{R_{3} + R_{4}} \left(1 + \frac{R_{2}}{R_{1}}\right) v_{I1} - \frac{R_{2}}{R_{1}} v_{I2}$$

The circuit **amplifies** the difference between the input voltages and **rejects** common mode signals.

$$\begin{aligned} v_{I1} &= v_1 + v_{noise} \\ v_{I2} &= v_2 + v_{noise} \end{aligned} \quad v_O &= A_v (v_1 + v_{noise} - v_2 - v_{noise}) = A_v (v_1 - v_2) \end{aligned}$$

In practical situations: $R_1 = R_3$ and $R_2 = R_4$ Laura-Nicoleta IVANCIU, *Electronic devices*

Superposition method

Input resistance, seen by v_{I1}

$$R_{I1} = R_3 + R_4$$

Input resistance, seen by V₁₂

$$R_{I2} = R_1$$

Example

A sensor provides a variable signal, v_i , with a dc component, V_1 .

It is necessary to amplify the variable signal, that carries information, 10 times.

Design a differential amplifier for this requirement.

Standard instrumentation amplifier

- high R_i
- very good common mode rejection ratio

OA1 and OA2:

- high input resistance
- set the gain

OA3:

- gain = 1
- conversion from two voltages (v_{\rm 01} and v_{\rm 02}) to a single voltage (v_{\rm 0})
- additional rejection of the common mode

Standard instrumentation amplifier

Differential amplifier

Integrated precision differential amplifiers

AD8221 Analog Devices

Precision Instrumentation Amplifier

 $Av = 1 + (49.4 \text{ k}\Omega/\text{R}_{G})$

- MAX4194, MAX4195, MAX4196, MAX4197
 TOP VIEW
 Micropower, Single-Supply, Rail-to-Rail, Precision Instrumentation
 Amplifiers
 Maxim Integrated
- LT1167 Linear Technology

Common uses of instrumentation amplifiers: sensor readings for medical and industrial applications. Examples?

Recap – circuits with OpAmp

Given a circuit with OpAmp, how can we tell whether the circuit is:

- inverting or non-inverting?
- a simple comparator, a hysteresis comparator, or an amplifier?

What parameters do we compute, for each of the above? What can we tell about the output voltage?

Recap – circuits with OpAmp

Type of feedback	v _i goes to	Application	We compute	v _o
No feedback	+	Simple comparator, non-inverting	V _{Th}	$V_{O} \in \{V_{OL}; V_{OH}\}$
	-	Simple comparator, inverting		
Positive feedback	+	Hysteresis comparator, non-inverting	V _{Thl}	$V_{O} \in \{V_{OL}; V_{OH}\}$
	-	Hysteresis comparator, inverting	V _{ThH}	
Negative feedback	+	Amplifier, non-inverting	Δ	$V_{O} \in (V_{OL}; V_{OH})$
	-	Amplifier, inverting	A _V	

Summary

Today's menu consisted of a fine selection of OpAmp circuits, such as:

- Summing amplifiers with OpAmp
 - Inverting summing amplifier
 - Non-inverting summing amplifier
- Differential amplifiers with OpAmp
- Recap circuits with OpAmp

Next week: Applications with OpAmp