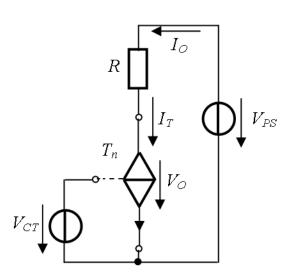

Q1

The operating principle for transistors is:

- a) The voltage applied between two terminals controls the voltage between the remaining two terminals
- c) The current through one terminal controls the current through the remaining two terminals

- b) The voltage applied between two terminals controls the current through the third terminal
- d) The current through one terminal controls the voltage between the remaining two terminals

Based on the plot, the following is true:


a)
$$V_{CT} < V_{Thn}$$
, $T_n - on$, $I_T > 0$ b) $V_{CT} > V_{Thn}$, $T_n - on$, $I_T = 0$

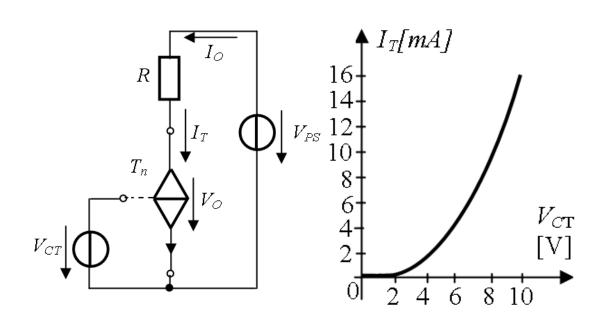
o)
$$V_{CT} > V_{Thn}$$
, $T_n - on$, $I_T = 0$

c)
$$V_{CT} < V_{Thn}$$
, $T_n - off$, $I_T = 0$

d)
$$V_{CT} > V_{Thn}$$
, $T_n - off$, $I_T < 0$

Q3

For the given schematic, the following is true:


a)
$$V_{omax} = -V_{CT_i}I_{Oex} = V_{PS}/R$$

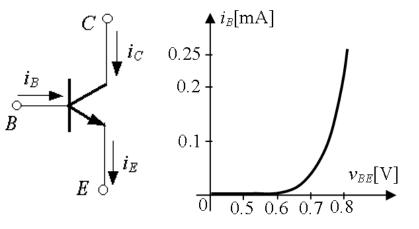
b)
$$V_{omax} = V_{CT} I_{Oex} = V_{PS}/R$$

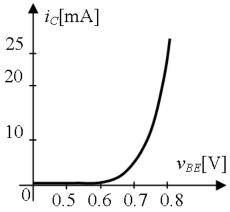
c)
$$V_{omax} = V_{PS}$$
, $I_{Oex} = V_{PS}/R$

d)
$$V_{omax} = V_{PS}$$
, $I_{Oex} = -V_{PS}/R$

Q4

For the given schematic and plot, the following is true:


a)
$$V_{Thn} = 10 \text{ V}$$

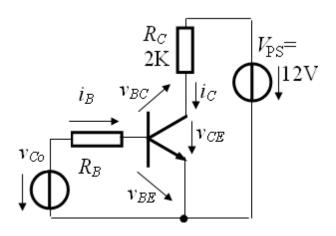

b)
$$V_{CT} = 10 \text{ V}, I_{T} = 4 \text{ mA}$$

c)
$$V_{CT} = 0 \text{ V}, I_{T} = 2 \text{ mA}$$

d)
$$V_{Thn} = 2 V$$

Q5

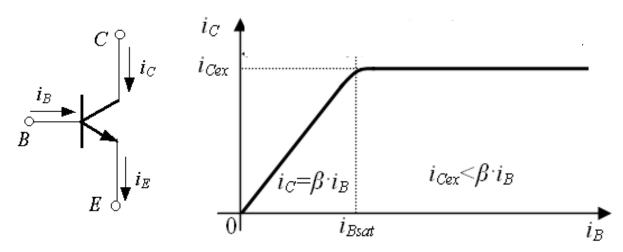
Based on the plots, the value for β is:


a)
$$\beta = 100 \text{ mA/V}^2$$

b)
$$\beta = 100$$

c)
$$\beta = 100 \text{ V/mA}$$

d)
$$\beta = 100 \text{ mA}$$

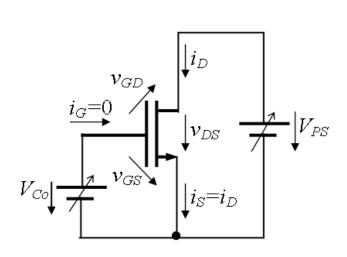

Q6

For the given schematic, with $v_{co} = 0.4 \text{ V}$:

- a) T off because $v_{Co} = 0.4 \text{ V} < V_{Th,n} = 0.6 \text{ V}$
- b) T off because $v_{Co} = 0.4 \text{ V} > V_{Th,n} = 0.6 \text{ V}$
- c) T on because $v_{Co} = 0.4 \text{ V} > V_{CEsat} = 0.2 \text{ V}$
- d) T on because v_{Co} = 0.4 V < V_{CEsat} = 0.2 V

Q7

For an n-type BJT, the following is true:


a)
$$(a_F)$$
: $i_C = \beta i_{Bsat}$
(exc): $i_C < \beta i_B$

c) (exc):
$$i_C = \beta i_B$$

 (a_F) : $i_{Cex} < \beta i_B$

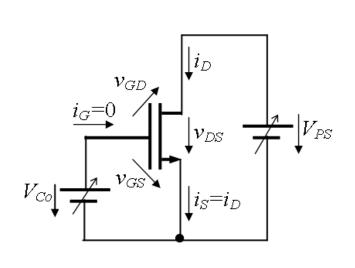
b) (exc):
$$i_C = \beta i_B$$

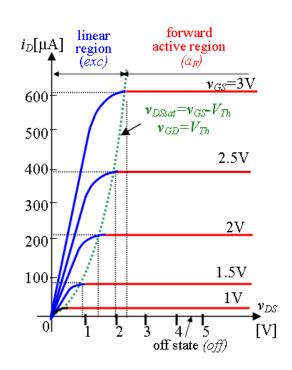
 (a_F) : $i_C < \beta i_B$

d)
$$(a_F)$$
: $i_C = \beta i_B$
(exc): $i_C < \beta i_B$

Q8

Assuming T in (a_F) , the following is true:

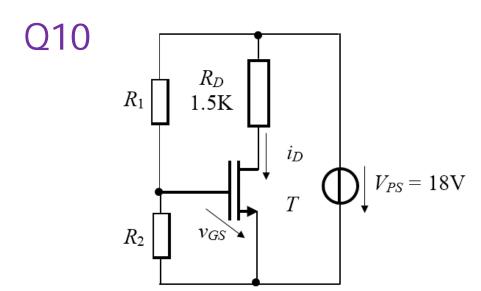

a)
$$v_{DS} < V_{DSsat}$$


b)
$$i_D = \beta (v_{DS} - V_{Th})^2$$

c)
$$v_{DS} > V_{DSsat}$$

d)
$$i_D = \beta [2(v_{GS} - V_{Th})v_{DS} - v_{DS}^2]$$

Q9


For $V_{GS} = 2.5 \text{ V}$ and $I_D = 300 \text{ uA}$, the following is true:

a)
$$V_{DS} = 2.5 \text{ V, T in } (a_F)$$

b)
$$V_{DS} = 1 \text{ V, T in } (a_F)$$

c)
$$V_{DS} = 2.5 \text{ V, T in (exc)}$$

d)
$$V_{DS} = 1 V$$
, T in (exc)

For $V_{GS} = 9$ V, the values for R_1 and R_2 can be:

a)
$$R_1 = 1.5 \text{ M}\Omega$$
; $R_2 = 0.5 \text{ M}\Omega$; b) $R_1 = 5 \text{ M}\Omega$; $R_2 = 5 \text{ M}\Omega$;

b)
$$R_1 = 5 M\Omega$$
; $R_2 = 5 M\Omega$

c)
$$R_1 = 15 \text{ M}\Omega$$
; $R_2 = 5 \text{ M}\Omega$;

d)
$$R_1 = 0.5 \text{ M}\Omega$$
; $R_2 = 1.5 \text{ M}\Omega$;