VOLTAGE AMPLIFIERS

WITH

OP-AMPs

Op-amp to be used as a voltage amplifier

$$v_0 = a \cdot v_D = \infty \cdot v_D$$

> Utilization as amplifier

$$v_O \in (V_{OL} ; V_{OH})$$

▶ required to set $v_D=0$. $v_O = a \cdot v_D = \infty \cdot 0$ - *undefined*

Op-amp with NF: amplifier

What are the possibilities to connect the input terminals?

Inputs		
NI	II	Amplifier
v _I	ground	noninverting
ground	v _I	inverting
v _{I1}	<i>v</i> ₁₂	differential

In a non-inverting amplifier, the output voltage changes in the same direction as the input voltage.

Another method to find the gain

• same current through R_1 and R_2

$$\frac{v_I}{R_1} = \frac{v_O - v_I}{R_2} \qquad A_v = \frac{v_O}{v_I} = 1 + \frac{R_2}{R_1}$$

- > gain is set only by the ratio of two resistors
- ➤ the gain value: precise and stable
- the gain is independent of op-amp; it is not influenced by the technological spread of op-amp parameters

 V_{PS}

 v^+

 v_D

 R_2

 R_1

➢ direct consequence of the NF for the case of a high value of its own gain (a → ∞ for op-amp)

 v_I sees an open circuit, so $R_i = \infty$

$$R_{o} = rac{v_{O_{open}}}{i_{O_{sc}}} = rac{v_{O_{open}}}{\infty} = 0$$

Input and output resistances

 R_i the resistance seen by the input voltage source

 R_o the resistance seen by the load when the input voltage is set to zero

 v_I sees an open circuit, so $R_i = \infty$

 $R_o = 0$

• VTC

• $v_0(t)$ for $v_T[V]$ triangular 0 $v_I(t)$, 1.5V -1,5 amplitude, $v_0[V]_9$ zero dc component

• $v_O(t)$ for triangular $v_I(t)$, 2V amplitude 0.5V dc component

 $v_{\scriptscriptstyle O}$

Adjustable gain

version 1

$$A_{v} \in \left[1 + \frac{R_{2} + P}{R_{1}}; 1 + \frac{R_{2}}{R_{1} + P}\right]$$

 R_2

$$A_{v} \in \left[0; 1 + \frac{R_2}{R_1}\right]$$

=0

 $A_{v_{\min}}$

Voltage follower

≻ Total NF

- ≻ No voltage gain
- ➢ Infinite current gain

Buffer stage

Connects a source (or the output of a circuit) with a high output resistance (can only provide low current) to a low load resistance (needs high current).

$$v_D = v^+ - v^- = 0 - \frac{R_2}{R_1 + R_2} v_I - \frac{R_1}{R_1 + R_2} v_o = 0$$

$$A_{v} = \frac{v_{O}}{v_{I}} = -\frac{R_{2}}{R_{1}}$$

In an inverting amplifier, the output voltage changes in an opposite direction to the input voltage

Alternative to comprehend the operation of the circuit

Input and output resistances

- ▷ Compared with the noninverting amplifier where $R_i \rightarrow \infty$, for the inverting amplifier we have a smaller input resistance.
- > Usually, the magnitude order is units of K Ω , tens of K Ω
- If a high input impedance is required the noninverting connection is recommended

Illustration

 $R_1 = 10$ K, $R_2 = 100$ K, supply ± 12 V

Design example Design an inverting amplifier with $R_i > 8K$ and $|A_v|$ adjustable in the range of [10,18]

$$|A_{\nu}|_{\min} = \frac{R_2}{R_1} = 10$$
 $|A_{\nu}|_{\max} = \frac{R_2 + P}{R_1} = 18$
 $R_2 = 10R_1$ $R_2 + P = 18R_1$

Solution 1

From R_i requirement: $R_i = R_1 \ge 8k\Omega$ Choose $R_1 = 10k\Omega$

 $R_2 = 10 \cdot 10 = 100 \,\mathrm{k}\Omega$ $P = 18 \cdot 10 - 100 = 80 \,\mathrm{k}\Omega$

No potentiometer is manufactured with this value, they are available only for a few discrete values, with decimal multiples and submultiples (1, 2.2, 2.5, 4.7, 5)

We must use P = 100 k. Keeping $R_2 = 100$ K, it results:

$$R_{1} = \frac{R_{2} + P}{18} = \frac{100 + 100}{18} = 11,1k\Omega \qquad R_{2} = 100k\Omega \qquad P = 100k\Omega$$

Verification: $|A_{\nu}|_{\min} = 9.1 \quad |A_{\nu}|_{\max} = 18$ Acceptable ?

Design example (cont.)

Solution 2

Select
$$P = 100k$$

 $\begin{cases} R_2 = 10R_1 \\ R_2 + 100k = 18R_1 \end{cases}$
 $\begin{cases} R_1 = 12.5k \\ R_2 = 125k \end{cases}$

Verification:

$$|A_{\nu}|_{\min} = 10$$
 $|A_{\nu}|_{\max} = 18$ $R_i = R = 12,5k\Omega > 8k\Omega$

What if we select P = 10k?

Differential amplifier

Superposition method

for $v_{I1} = v_{I2}$ results $v_O = 0$,

The circuit **amplifies only the difference** of the voltages and **rejects de common mode** signals.

in practical situations: $R_1 = R_3$ and $R_2 = R_4$.

Utilization of the differential amplifier

Noise suppression for:

- Signal measurements
- Biomedical signal measurements
- Data transmission

transmission channel

Standard instrumentation amplifier

high input resistance

➢ as good as possible common mode rejection

OPTIONAL

OPTIONAL

Superposition method:

$$v_{O1} = \left(1 + \frac{R_2}{R_1}\right) v_{I1} - \frac{R_2}{R_1} v_{I2}$$
$$v_{O2} = \left(1 + \frac{R_2}{R_1}\right) v_{I2} - \frac{R_2}{R_1} v_{I1}$$

$$v_O = \frac{R}{R} \left(v_{O1} - v_{O2} \right)$$

$$v_{O} = \left(1 + \frac{2R_{2}}{R_{1}}\right) (v_{I1} - v_{I2})$$

Integrated precision differential amplifiers

• AD8221 Analog Devices Precision Instrumentation Amplifier $Av = 1 + (49.4 \text{ k}\Omega/\text{R}_{G})$

https://www.analog.com/media/en/technical-documentation/datasheets/AD8221.pdf

• MAX4194, MAX4195, MAX4196, MAX4197 Micropower, Single-Supply, Rail-to-Rail, Precision Instrumentation Amplifiers *Maxim Integrated*

• LT1167 Linear Technology

Exercise

Assume suitable values for v_{I1} , v_{I2} to have the op-amp in the active region.

- a) What is the application of the circuit?
- b) What is the expression $v_O(v_{I1}, v_{I2})$?
- c) What is the input resistance seen by v_{I1} ?
- d) What should be the relationship between resistances to obtain:
- $v_0 = 5(v_{I1} v_{I2})?$ e) Plot $v_{I1}(t)$, $v_{I2}(t)$ and $v_0(t)$ if $v_{I1}(t) = 0.5 \text{sin}\omega t [V] + v_{noise}$ $v_{I2}(t) = -0.5 \text{sin}\omega t [V] + v_{noise}$

Inverting summing amplifier

 $v_{o} = ?$

$$v_{O} = -\left(\frac{R}{R_{1}}v_{I1} + \frac{R}{R_{2}}v_{I2}\right)$$

 $R_1 = R_2 = 2R$

Average of input voltages

Exercise

- a) $v_O(v_{i1}, v_{i2})$ assuming op amp in the active region. What is the application of the circuit?
- b) Considering $v_{i1}=2V$, how does the VTC $v_O(v_{i2})$ look like for $v_{i2} \in [-5V; 5V]$? In this situation what is the v_{i2} range to maintain the amplifier in its active region?
- c) For the resistances in figure how does $v_O(t)$ look like for the input voltages in the figure?
- d) Size R_1 , R_2 , R_3 , R_4 so that the output will be $v_0 = -(v_{i1} + v_{i2})$. How can the circuit be modified to obtain a noninverting summing circuit $v_0 = v_{i1} + v_{i2}$?

weighted

average

19+ Relationship between resistors to have $v_O = v_{I1} + v_{I2}$?

$$R_1 = R_2$$
 and $R_3 = R_4$
Usually $R_1 = R_2 = R_3 = R_4$