VOLTAGE AMPLIFIERS

WITH

OP-AMPs

Op-amp to be used as a voltage amplifier

$$
v_O = a v_D = \infty v_D
$$

➢ *Utilization as amplifier*

$$
v_O \in (V_{OL} \, ; \, V_{OH})
$$

 \triangleright required to set $v_D=0$. $v_O=a v_D=\infty \cdot 0$ *- undefined*

 $\triangleright v_D$ can be kept to 0 by connecting some resistances in the exterior of the op-amp in a *negative feedback* configuration. These resistances together with the op-amp maintain v_D to zero and establish the value of the output voltage \Rightarrow op-amp amplifiers.

Op-amp with NF: amplifier

What are the possibilities to connect the input terminals?

In a non-inverting amplifier, the output voltage changes in the same direction as the input voltage.

Another method to find the gain

• same current through R_1 and R_2

$$
\frac{v_I}{R_1} = \frac{v_O - v_I}{R_2} \qquad A_v = \frac{v_O}{v_I} = 1 + \frac{R_2}{R_1}
$$

- \triangleright gain is set only by the ratio of two resistors
- \triangleright the gain value: precise and stable
- \triangleright the gain is independent of op-amp; it is not influenced by the technological spread of op-amp parameters

i

 V_{PS}

i

 $R_{\scriptscriptstyle 1}$

 $\boldsymbol{\nu}^+$

 $v_{\scriptscriptstyle D}$

 $R_{\scriptscriptstyle 2}$

 \triangleright direct consequence of the NF for the case of a high value of its own gain $\bar{a} \rightarrow \infty$ for op-amp)

vI sees an open circuit, so $R_i = \infty$

$$
R_o = \frac{v_{O_{open}}}{i_{O_{sc}}} = \frac{v_{O_{open}}}{\infty} = 0
$$

Input and output resistances

 R_i the resistance seen by the input voltage source

Ro the resistance seen by the load when the input voltage is set to zero

vI sees an open circuit, so $R_i = \infty$

 $R_{o} = 0$

• VTC

• $v_0(t)$ for triangular $v_I(t)$, 1.5V amplitude, $v_o[V]_0$ t zero dc component

• $v_O(t)$ for triangular $v_I(t)$, 2V amplitude 0.5V dc component

 v_ϕ

Adjustable gain

$$
A_v\in\left[1+\frac{R_2+P}{R_1};1+\frac{R_2}{R_1+P}\right]
$$

$$
A_v \in \left[0;1+\frac{R_2}{R_1}\right]
$$

Voltage follower

➢ Total NF

- \triangleright No voltage gain
- ➢ Infinite current gain

Buffer stage

Connects a source (or the output of a circuit) with a high output resistance (can only provide low current) to a low load resistance (needs high current).

$$
\nu_D = \nu^+ - \nu^- = 0 - \frac{R_2}{R_1 + R_2} \nu_I - \frac{R_1}{R_1 + R_2} \nu_o = 0
$$

$$
A_{\nu} = \frac{\nu_o}{\nu_I} = -\frac{R_2}{R_1}
$$

In an inverting amplifier, the output voltage changes in an opposite direction to the input voltage

Alternative to comprehend the operation of the circuit

Input and output resistances

- \triangleright Compared with the noninverting amplifier where $R_i \rightarrow \infty$, for the inverting amplifier we have a smaller input resistance.
- \triangleright Usually, the magnitude order is units of K Ω , tens of K Ω
- \triangleright If a high input impedance is required the noninverting connection is recommended

Illustration

 $R_1 = 10K$, $R_2 = 100K$, supply $\pm 12V$

Design example Design an inverting amplifier with $R_i > 8K$ and $|A_v|$ adjustable in the range of [10,18]

$$
|A_{\nu}|_{\min} = \frac{R_2}{R_1} = 10 \t |A_{\nu}|_{\max} = \frac{R_2 + P}{R_1} = 18
$$

$$
R_2 = 10R_1 \t R_2 + P = 18R_1
$$

Solution 1

From R_i requirement: $R_i = R_1 \geq 8k\Omega$ **Choose** $R_1 = 10k\Omega$

 $R_{2} =$ $P = 18 \cdot 10 - 100 = 80k\Omega$

No potentiometer is manufactured with this value, they are available only for a few discrete values, with decimal multiples and submultiples (1, 2.2, 2.5, 4.7, 5)

We must use $P = 100$ k. Keeping $R_2 = 100$ K, it results:

$$
R_1 = \frac{R_2 + P}{18} = \frac{100 + 100}{18} = 11,1k\Omega \qquad R_2 = 100k\Omega \qquad P = 100k\Omega
$$

Verification: $|A_v|_{min} = 9.1 \qquad |A_v|_{max} = 18$ Acceptable?

Design example (cont.)

Solution 2

Select
$$
P = 100k
$$
 $\begin{cases} R_2 = 10R_1 \\ R_2 + 100k = 18R_1 \end{cases} \begin{cases} R_1 = 12.5k \\ R_2 = 125k \end{cases}$

Verification:

$$
\left| A_{\nu} \right|_{\min} = 10 \quad \left| A_{\nu} \right|_{\max} = 18 \quad R_{i} = R = 12,5 \text{k}\Omega > 8 \text{k}\Omega
$$

What if we select $P = 10k$?

Differential amplifier

Superposition method

2

for $v_{I1} = v_{I2}$ results $v_{O} = 0$,

The circuit **amplifies only the difference** of the voltages and **rejects de common mode** signals.

in practical situations: $R_1 = R_3$ and $R_2 = R_4$.

Utilization of the differential amplifier

Noise suppression for:

- Signal measurements
- Biomedical signal measurements
- Data transmission

treasmission

Standard instrumentation amplifier

high input resistance

OPTIONAL

➢ as good as possible common mode rejection

OPTIONAL

Superposition method:

$$
v_{O1} = \left(1 + \frac{R_2}{R_1}\right) v_{I1} - \frac{R_2}{R_1} v_{I2}
$$

$$
v_{O2} = \left(1 + \frac{R_2}{R_1}\right) v_{I2} - \frac{R_2}{R_1} v_{I1}
$$

$$
v_O = \frac{R}{R} (v_{O1} - v_{O2})
$$

$$
v_O = \left(1 + \frac{2R_2}{R_1}\right) (v_{I1} - v_{I2})
$$

Integrated precision differential amplifiers

• **AD8221** *Analog Devices* Precision Instrumentation Amplifier $Av = 1 + (49.4 \text{ k}\Omega/R_G)$

[https://www.analog.com/media/en/technical-documentation/data](https://www.analog.com/media/en/technical-documentation/data-sheets/AD8221.pdf)[sheets/AD8221.pdf](https://www.analog.com/media/en/technical-documentation/data-sheets/AD8221.pdf)

• **MAX4194**, **MAX4195**, **MAX4196**, **MAX4197** Micropower, Single-Supply, Rail-to-Rail, Precision Instrumentation Amplifiers *Maxim Integrated*

• **LT1167** *Linear Technology*

Exercise

Assume suitable values for v_{I1} , v_{I2} to have the op-amp in the active region.

- a) What is the application of the circuit?
- b) What is the expression $v_o(v_{I1}, v_{I2})$?
- c) What is the input resistance seen by v_{I1} ?
- d) What should be the relationship between resistances to obtain:

 $v_{\rm O} = 5(v_{\rm I1} - v_{\rm I2})$? e) Plot $v_{I}(t)$, $v_{I2}(t)$ and $v_{O}(t)$ if $v_{I1}(t) = 0.5$ sin ωt [V] + v_{noise} v_{I2} $v_p(t) = -0.5$ sin ωt [V] + v_{noise}

Inverting summing amplifier

= $_{O} = ?$ *v*

$$
v_{O} = -\left(\frac{R}{R_1}v_{I1} + \frac{R}{R_2}v_{I2}\right)
$$

 $R_{\rm l}$ = $=R$ ₂ $= 2R$

Average of input voltages

Exercise

- a) $v_o(v_{i1}, v_{i2})$ assuming op amp in the active region. What is the application of the circuit?
- b) Considering v_{i1} =2V, how does the VTC $v_o(v_{i2})$ look like for $v_{i2} \in [-5V; 5V]$? In this situation what is the v_{i2} range to maintain the amplifier in its active region?
- c) For the resistances in figure how does $v_o(t)$ look like for the input voltages in the figure?
- d) Size R_1 , R_2 , R_3 , R_4 so that the output will be $v_{0} = -(v_{i1} + v_{i2})$. How can the circuit be modified to obtain a noninverting summing circuit $v_{0} = v_{i1} + v_{i2}$?

$$
R_1 = R_2 \quad \text{and} \quad R_3 = R_4
$$

Usually
$$
R_1 = R_2 = R_3 = R_4
$$