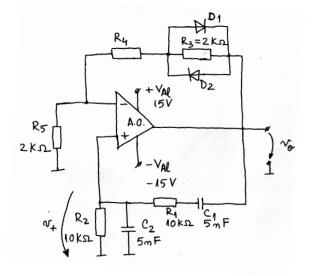
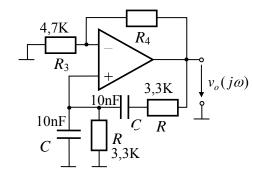
SEMINAR 6

Contents:


- Sinusoidal oscillators
- Nonsinusoidal Oscillators

1.

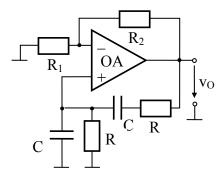
a) How do the $v_o(t)$ and $v_+(t)$ signals look like, qualitative, in permanent regime? Compute the frequency of the $v_o(t)$ output signal.


b) Size R_4 such that the circuit will sustain the oscillations in steady-state regime. Consider that in conduction, the equivalent resistances of D_1 and D_2 diodes are $r_{D1}=r_{D2}=0,5K\Omega$. Verify the chosen value for the condition of starting-up the oscillation in transient regime.

c) How does the $v_o(t)$ signal shape modifies in permanent regime if the D_2 diode connection is omitted in the circuit?

2.

- a) What is the application of the circuit? What are the expression and value of the oscillation frequency?
- b) What should be the value of the R_4 resistor to accomplish the oscillation criterion?
- c) Assume a value of 6V for the output voltage. What does the output voltage and the voltages at the inverting and noniverting input look like?
- d) Complete the circuit in order to obtain the automatic control of the amplitude.


3.

For this circuit R_2 =5.6K Ω and C=10nF.

a) Assume that the Barkhausen condition is fulfilled. What are the values of resistances R to obtain oscillation on $f_0=3.18$ KHz.

b) Deduce the value of R_1 to fulfill the oscillation (Barkhausen) condition.

c) Using diodes modify the circuit to assure an automatic gain control. Assuming $r_d=2K\Omega$ of the conducting diode in the moment when the Barkhausen condition is satisfied, size all the resistors in circuit. The start-up condition should also be satisfied.

4.

For the position of the cursor of P in the middle, the diodes operate at $r_{D1,on} = r_{D2,on} = 0.5 K\Omega$. Consider $R_1 = R_2 = 15 k\Omega$ and $C_1 = C_2 = 10 nF$. Approximate $R_3 \gg r_{D1,on}$, $r_{D2,on}$.

a) What is the expression and the value of the frequency of the sinewave $v_o(t)$?

b) What are the expression and the value of r (positive feedback transmittance) at the frequency of oscillation? Find a suitable value of R_4 to fulfill the Barkhausen condition in steady state assuming the cursor of P is in the middle.

c) What is the condition on the product $a \cdot r$ to start-up the oscillation? Verify that, for the value of R_4 chosen at (b), the oscillation start-up can be achieved.

d) Assume the diodes D_1 and D_2 are not connected in the circuit. In this case, how would $v_o(t)$ look like (in steady state) for a value of $R_4=1K\Omega$?

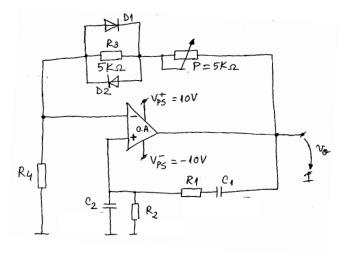
5.

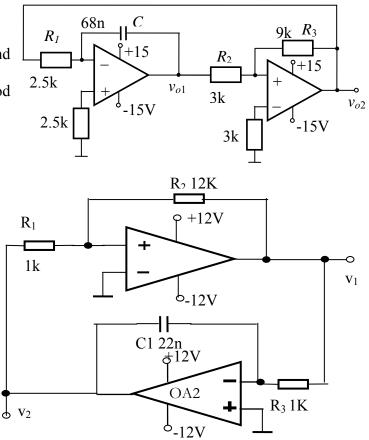
The op ams are rail-to-rail type.

a) Draw qualitatively the signals $v_{01}(t)$ and $v_{02}(t)$.

b) What are the expressions and minimum and maximum values for $v_{01}(t)$ and $v_{02}(t)$?

c) What is the expression and value of the period of the v_{01} signal?


d) Propose a solution for frequency adjustment.


6.

a) Considering v_2 the input voltage, find the values of the threshold voltages for the comparator circuit with OA1.

b) Plot $v_1(t)$ and $v_2(t)$?

c) What is the expression and value of the oscillation frequency?

