DESIGN ILLUSTRATION OF A SYMMETRIC OTA USING MULTIOBJECTIVE GENETIC ALGORITHMS

- Motivation and related work
- Symmetric OTA
- Multiobjective optimization using genetic algorithms
- Design optimization method
- Simulations and results
- Conclusions and future development

MOTIVATION AND RELATED WORK

o Manual analog circuit design:

- very difficult and complex task
- large number of conflicting requirements

o Automatic circuit design:

- great development over the past decade
- includes GAs in the design process
- industrial simulator to close the loop
- multiobjective optimization

SYMMETRIC OTA CIRCUIT DESCRIPTION

- a differential pair M_1, M_2

- three current mirrors M_7 - M_8 , M_3 - M_5 , M_4 - M_6

- two identical current mirrors to load the input differential pair

- current gain B

- **design parameters** : the channel size (*W* and *L*) of all transistors the biasing current *I* the gain of the current mirror *B*

KES 2011

SYMMETRIC OTA OPERATING EQUATIONS

$$P = (V_{DD} - V_{SS})(I + BI) = (V_{DD} - V_{SS})(I + B)I$$

Simplifying assumptions: fixed Length (L) and
$$\begin{bmatrix} (W / L)_1 = (W / L)_2 \\ (W / L)_3 = (W / L)_4 \\ (W / L)_7 = (W / L)_8 \end{bmatrix}$$

MULTIOBJECTIVE OPTIMIZATION USING GENETIC ALGORITHMS

• General Multiobjective Optimization Problem (MOP):

Find a vector *x* that optimizes

 $f(x) = (f_1(x), f_2(x), ..., f_N(x))^T$

subject to the following constraints:

$$g_{j}(x) < 0, j = \overline{1, \dots, M}$$
$$h_{k}(x) = 0, k = \overline{1, \dots, K}$$
$$a(l) \le x(l) \le b(l), 1 \le l \le n$$

Result: several optimal objective vectors (the Pareto front)

DESIGN OPTIMIZATION METHOD

SIMULATIONS AND RESULTS SIMULATION CONDITIONS

- Chromosome: $[W_1 W_3 W_7 I]$
- Design specifications:

No.	Specification	Desired value
1	Gain	>200
2	Bandwidth	>150KHz
3	Layout area	Minimized
4	Power consumption	Minimized

• Objective functions: absolute errors, with respect to the desired values

• Settings and constraints:
$$L_1 = L_2 = 1 \mu m$$

 $L_3 = L_4 = L_5 = L_6 = 10 \mu m$
 $(W/L)_1 > 0.036I$

SIMULATIONS AND RESULTS Results – rank histogram

- 60 individuals, 100 generations
- 21 individuals on the final Pareto front

Rank histogram for the final Pareto front

SIMULATIONS AND RESULTS Results – Bandwidth vs. Gain

Trade-off between bandwidth and gain

SIMULATIONS AND RESULTS Results – Gain VS. Bandwidth VS. Power consumption

3D plot for gain, bandwidth and power consumption

CONCLUSIONS AND FUTURE DEVELOPMENT

- design illustration of a multiobjective optimization method
- "greater than" and "minimum" type design specifications
- Matlab/Spice based implementation
- solutions located on the Pareto front
 - time consuming
 -) modular structure
 -) the designer makes the final choice

• adjustments and testing on more complex circuits